Colonization of the infant gut is an important developmental process characterized by high carriage of antimicrobial resistance genes (ARGs) and high abundances of pathobionts. The horizontal transfer of ARGs to pathogenic bacteria represents a major public health concern. However, there is still a paucity of longitudinal studies surveilling ARGs in healthy infant guts at high temporal resolution. Furthermore, we do not yet have a clear view of how temporal variation in ARG carriage relates to the dynamics of specific bacterial populations, as well as community virulence potential. Here, we performed deep shotgun metagenomic sequencing of monthly fecal samples from a cohort of 12 infants, covering the first year of life to interrogate the infant gut microbiome for ARG content. We further relate ARG dynamics to the dynamics of taxa, virulence potential, as well as the potential for ARG mobilization. We identify a core resistome dominated by efflux systems typically associated with Enterobacteriaceae. Overall ARG carriage declined over the first year of life and showed strong contemporaneous correlation with the population dynamics of Proteobacteria. Furthermore, the majority of ARGs could be further mapped to metagenome-assembled genomes (MAGs) classified to this phylum. We were able to assign a large number of ARGs to E. coli by correlating the temporal dynamics of individual genes with species dynamics, and we show that the temporal dynamics of ARGs and virulence factors are highly correlated, suggesting close taxonomic associations between these two gene classes. Finally, we identify ARGs linked with various categories of mobile genetic elements, demonstrating preferential linkage among mobility categories and resistance to different drug classes. While individual variation in ARG carriage is substantial during infancy there is a clear reduction over the first year of life. With few exceptions, ARG abundances closely track the dynamics of pathobionts and community virulence potential. These findings emphasize the potential for development of resistant pathogens in the developing infant gut, and the importance of effective surveillance in order to detect such events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319485 | PMC |
http://dx.doi.org/10.1038/s41598-024-69275-w | DOI Listing |
Aging is the main risk factor for developing cognitive impairments and associated neurodegenerative diseases. However environmental factors, including nutritional health, are likely to promote or reduce cognitive impairments and neurodegenerative pathologies. An intricate relationship exists between maternal nutrition; and adult eating behavior, metabolic phenotype and cognitive abilities.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFNutrients
December 2024
Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17100, Türkiye.
Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.
View Article and Find Full Text PDFNutrients
December 2024
Internal Medicine Unit, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Via Trabucco, 180, 90146 Palermo, Italy.
: An increasing number of studies have reported liver involvement in both children and adults with celiac disease (CD). This often manifests as isolated hypertransaminasemia or hepatic steatosis (HS). The aim of this study was to define the prevalence of hypertransaminasemia and HS in a pediatric population with CD before starting a gluten-free diet (GFD) and to analyze how the introduction of a GFD could modify this condition.
View Article and Find Full Text PDFSci Rep
January 2025
USF Center for Microbiome Research, Microbiomes Institute, University of South Florida Morsani College of Medicine, Tampa, FL, 33612, USA.
Microbiome abnormalities (dysbiosis) significantly contribute to the progression of Alzheimer's disease (AD). However, the therapeutic efficacy of microbiome modulators in protecting against these ailments remains poorly studied. Herein, we tested a cocktail of unique probiotics, including 5 Lactobacillus and 5 Enterococcus strains isolated from infant gut with proven microbiome modulating capabilities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!