A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Amyloid-β Causes NMDA Receptor Dysfunction and Dendritic Spine Loss through mGluR1 and AKAP150-Anchored Calcineurin Signaling. | LitMetric

Neuronal excitatory synapses are primarily located on small dendritic protrusions called spines. During synaptic plasticity underlying learning and memory, Ca influx through postsynaptic NMDA-type glutamate receptors (NMDARs) initiates signaling pathways that coordinate changes in dendritic spine structure and synaptic function. During long-term potentiation (LTP), high levels of NMDAR Ca influx promote increases in both synaptic strength and dendritic spine size through activation of Ca-dependent protein kinases. In contrast, during long-term depression (LTD), low levels of NMDAR Ca influx promote decreased synaptic strength and spine shrinkage and elimination through activation of the Ca-dependent protein phosphatase calcineurin (CaN), which is anchored at synapses via the scaffold protein A-kinase anchoring protein (AKAP)150. In Alzheimer's disease (AD), the pathological agent amyloid-β (Aβ) may impair learning and memory through biasing NMDAR Ca signaling pathways toward LTD and spine elimination. By employing AKAP150 knock-in mice of both sexes with a mutation that disrupts CaN anchoring to AKAP150, we revealed that local, postsynaptic AKAP-CaN-LTD signaling was required for Aβ-mediated impairment of NMDAR synaptic Ca influx, inhibition of LTP, and dendritic spine loss. Additionally, we found that Aβ acutely engages AKAP-CaN signaling through activation of G-protein-coupled metabotropic glutamate receptor 1 (mGluR1) leading to dephosphorylation of NMDAR GluN2B subunits, which decreases Ca influx to favor LTD over LTP, and cofilin, which promotes F-actin severing to destabilize dendritic spines. These findings reveal a novel interplay between NMDAR and mGluR1 signaling that converges on AKAP-anchored CaN to coordinate dephosphorylation of postsynaptic substrates linked to multiple aspects of Aβ-mediated synaptic dysfunction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11391497PMC
http://dx.doi.org/10.1523/JNEUROSCI.0675-24.2024DOI Listing

Publication Analysis

Top Keywords

dendritic spine
16
spine loss
8
learning memory
8
signaling pathways
8
levels nmdar
8
nmdar influx
8
influx promote
8
synaptic strength
8
activation ca-dependent
8
ca-dependent protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!