AI Article Synopsis

  • Older listeners struggle to understand speech in noisy settings, prompting research on where hearing deficits begin in the auditory system.
  • Tests were conducted on the auditory responses of aging mice to see how background noise affects sound encoding in the anteroventral cochlear nucleus (AVCN).
  • The study found that certain adaptations in AVCN cells remain stable with age, suggesting that hearing-in-noise difficulties might stem from other aging-related changes rather than direct alterations in these early auditory responses.

Article Abstract

Older listeners often report difficulties understanding speech in noisy environments. It is important to identify where in the auditory pathway hearing-in-noise deficits arise to develop appropriate therapies. We tested how encoding of sounds is affected by masking noise at early stages of the auditory pathway by recording responses of principal cells in the anteroventral cochlear nucleus (AVCN) of aging CBA/CaJ and C57BL/6J mice in vivo. Previous work indicated that masking noise shifts the dynamic range of single auditory nerve fibers (ANFs), leading to elevated tone thresholds. We hypothesized that such threshold shifts could contribute to increased hearing-in-noise deficits with age if susceptibility to masking increased in AVCN units. We tested this by recording the responses of AVCN principal neurons to tones in the presence and absence of masking noise. Surprisingly, we found that masker-induced threshold shifts decreased with age in primary-like units and did not change in choppers. In addition, spontaneous activity decreased in primary-like and chopper units of old mice, with no change in dynamic range or tuning precision. In C57 mice, which undergo early-onset hearing loss, units showed similar changes in threshold and spontaneous rate at younger ages, suggesting they were related to hearing loss and not simply aging. These findings suggest that sound information carried by AVCN principal cells remains largely unchanged with age. Therefore, hearing-in-noise deficits may result from other changes during aging, such as distorted across-channel input from the cochlea and changes in sound coding at later stages of the auditory pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320020PMC
http://dx.doi.org/10.1523/ENEURO.0215-24.2024DOI Listing

Publication Analysis

Top Keywords

principal cells
12
auditory pathway
12
hearing-in-noise deficits
12
masking noise
12
responses principal
8
anteroventral cochlear
8
cochlear nucleus
8
stages auditory
8
recording responses
8
dynamic range
8

Similar Publications

Regulator of G protein signaling 1 (RGS1) is known to be highly expressed in various tumors, but its specific effects and regulatory mechanism in ovarian cancer (OC) progression are not well understood. To delve into the tumor biology, a predictive risk model for OC was developed, incorporating RGS1, PRKG2, CD24, and ABCB1, with RGS1 exhibiting the strongest correlation. The model's reliability and validity were confirmed through Kaplan-Meier analysis, receiver operating characteristic (ROC) curve, and principal component analysis (PCA).

View Article and Find Full Text PDF

Chorionic trophoblast cells demonstrate functionally different phenotypes from placental trophoblasts.

Biol Reprod

January 2025

Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX 77555-1062, United States of America.

Chorionic trophoblast cells (CTCs) are one of the principal components of the fetal membrane and join with the decidua to form a feto-maternal interface. Recent success in isolating CTCs dealt with two separate questions: (1) The necessity of highly enriched and defined media with inhibitors of oxidative stress and cell transition and their impact on growth and trophoblast phenotype, (2) The functional differences between CTCs and other placental trophoblast lineages of cells (placental cytotrophoblast cells [PTC], and extravillous trophoblast [EVT]). CTCs were cultured either in defined media with various inhibitors or in media from which inhibitors were removed individually.

View Article and Find Full Text PDF

Physicochemical Characterization of Gallstone Surfaces to Predict Their Interaction with Salmonella Typhi.

Curr Microbiol

January 2025

Industrial and Surface Engineering Laboratory, Bioprocess and Biointerfaces Team, Department of Life Sciences, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, BP 523, 23000, Beni Mellal, Morocco.

Salmonella Typhi can adhere to and build biofilms on the surface of gallstones causing abnormal gallbladder mucosa, which could lead to carcinogenesis. The surface physicochemical properties of microbial cells and materials have been shown to play a crucial role in adhesion. Therefore, the purpose of this study was to investigate, for the first time, the surface properties of nine gallstones and to evaluate the influence of these parameters on the theoretical adhesion of S.

View Article and Find Full Text PDF

Epithelial cancers are typically heterogeneous with primary prostate cancer being a typical example of histological and genomic variation. Prior studies of primary prostate cancer tumour genetics revealed extensive inter and intra-patient genomic tumour heterogeneity. Recent advances in machine learning have enabled the inference of ground-truth genomic single-nucleotide and copy number variant status from transcript data.

View Article and Find Full Text PDF

Tertiary lymphoid structures (TLS) in the tumor microenvironment are prognostically beneficial in many solid cancer types. Reports on TLS in high-grade serous tubo-ovarian carcinoma (HGSC) are few, and the prognostic impact is unclear. We investigated mature TLS (mTLS), immature TLS (iTLS) and lymphoid aggregates (LA) in primary adnexal tumors (PTs) and synchronous omental/peritoneal metastases (pMets) of HGSC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!