Underground pipelines serve as critical infrastructure for gas transmission, strategically buried for safety, environmental, and economic considerations. Despite their importance, operational challenges and external interferences can lead to underground gas leaks with potentially catastrophic consequences for both human safety and the environment. The presence of a protective soil bed introduces complexities in understanding subsurface transport phenomena and quantifying gas releases accurately. Herein, this review presents a systematic analysis of published research in the field of underground gas releases, with an emphasis on interdisciplinary approaches that connect the lithosphere and atmosphere. The analysis highlights the broad spectrum of employed methods, including theoretical models based on fundamental principles, empirical formulations derived from experimental data, and sophisticated computational tools. A clear fundamental understanding and computational analysis, and to a lesser extent experimental, have been established to describe the migration regime. In contrast, more empirical research has addressed the crater formation regime, though focus was given to the far-field modelling following the soil ejection rather than the transient phenomena leading to the formation of the crater. Additionally, this review touches upon practical and conceptual topics, such as detection and localization techniques, and flow regimes in other gaseous flows through soil and powder beds, putting into question the applicability of some presumed granulated concepts to the flowing behavior expected beyond migration. The research landscape predominantly focuses on investigating the influence of release parameters on the release phenomena only from the atmospheric or soil domain perspective. This work provides insights that aim to first transcend both domains and then bridge the three distinct flow regimes-migration, uplift, and crater formation-despite the limited acknowledgment of the necessity of addressing all regimes concurrently through a universal approach. This review serves as a valuable resource for engineers to develop innovative solutions for the management of risks associated with underground gas leaks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175444 | DOI Listing |
Sci Rep
January 2025
Young Researchers and Elite Club, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran.
Precise estimation of rock petrophysical parameters are seriously important for the reliable computation of hydrocarbon in place in the underground formations. Therefore, accurately estimation rock saturation exponent is necessary in this regard. In this communication, we aim to develop intelligent data-driven models of decision tree, random forest, ensemble learning, adaptive boosting, support vector machine and multilayer perceptron artificial neural network to predict rock saturation exponent parameter in terms of rock absolute permeability, porosity, resistivity index, true resistivity, and water saturation based on acquired 1041 field data.
View Article and Find Full Text PDFSci Rep
January 2025
School of Geosciences, Yangtze University, Wuhan, 430100, Hubei, China.
As many oil and gas reservoirs approach depletion stages in the future, alongside growing energy storage demands, constructing gas storage facilities becomes critical for ensuring a stable natural gas supply. Consequently, a comprehensive geological analysis is essential to evaluate the feasibility of converting depleted gas reservoirs into gas storage facilities. The W gas reservoir in the Sichuan Basin, China, is nearing depletion and presents potential for conversion into a gas storage facility.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Energy Resources, University of Stavanger, Stavanger, Norway.
Salt caverns are widely regarded as a suitable option for the underground storage of hydrogen. However, an accurate assessment of the hydrogen leakage through the walls of salt caverns into the surrounding formations remains crucial. In this work, the flow of hydrogen into the surrounding formation is evaluated by assuming that salt rock consists of bundles of tortuous nano-capillary tubes.
View Article and Find Full Text PDFSci Rep
January 2025
Guizhou Coalfield Geology Bureau, Guizhou, 550016, China.
In-situ stress plays a pivotal role in influencing the desorption, adsorption, and transportation of coalbed methane. The reservoir gas content represents a pivotal physical parameter, encapsulating both the coalbed methane enrichment capacity and the underlying enrichment law of the reservoir. This investigation collates, computes, and consolidates data concerning pore pressure, breakdown pressure, closure pressure, triaxial principal stress, gas content, lateral pressure coefficient, and other pertinent variables from coal reservoirs within several coal-bearing synclines in the Liupanshui coalfield, China.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
Noble gas transport through geologic media has important applications in the prediction and characterization of measured gas signatures related to underground nuclear explosions (UNEs). Retarding processes such as adsorption can cause significant species fractionation of radionuclide gases, which has implications for measured and predicted signatures used to distinguish radioxenon originating from civilian nuclear facilities or from UNEs. Accounting for the effects of variable water saturation in geologic media on tracer transport is one of the most challenging aspects of modeling gas transport because there is no unifying relationship for the associated tortuosity changes between different rock types, and reactive transport processes such as adsorption that are affected by the presence of water likewise behave differently between gas species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!