A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metformin alleviates reactive gliosis and neurodegeneration, improving cognitive deficit in a rat model of temporal lobe epilepsy. | LitMetric

Cognitive impairment is a prevalent co-morbidity associated with epilepsy. Emerging studies indicate that neuroinflammation could be a possible link between epilepsy and its comorbidities, including cognitive impairment. In this context, the roles of glial activation, proinflammatory mediators, and neuronal death have been well studied and correlated with epilepsy-associated cognitive impairment in animal studies. While recent reports have demonstrated the anti-epileptogenic and anti-convulsant actions of metformin, its effect on epilepsy associated cognitive deficit remains unknown. Therefore, the current study investigated the effect of metformin treatment on neuroinflammation, neurodegeneration, and cognitive deficits after inducing status epilepticus (SE) with lithium-pilocarpine in rats. Metformin treatment improved the hippocampal-dependent spatial and recognition memory in Morris water maze and Novel object recognition tasks, respectively. Further, metformin treatment attenuated microglial and astroglial activation, accompanied by reduced IL-1β, COX-2 and NF-ĸβ gene expression. Additionally, metformin conferred neuroprotection by inhibiting the neuronal death as assessed by Nissl staining and transmission electron microscopy. These findings suggest that metformin holds promise as a therapeutic intervention for cognitive impairment associated with epilepsy, possibly through its modulation of glial activation and neuronal survival. Further research is needed to elucidate the precise mechanisms and to assess the long-term effect of metformin in epilepsy-associated cognitive impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2024.149138DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
20
metformin treatment
12
metformin
8
cognitive
8
cognitive deficit
8
associated epilepsy
8
glial activation
8
neuronal death
8
epilepsy-associated cognitive
8
epilepsy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!