A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Variation of microbial necromass carbon and its potential relationship with humification during composting of chicken manure with and without biochar addition. | LitMetric

Variation of microbial necromass carbon and its potential relationship with humification during composting of chicken manure with and without biochar addition.

Bioresour Technol

Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A & F University, 712100 Shaanxi, China.

Published: October 2024

Microbial necromass carbon (MNC) is an important stable organic C component. However, the variation of MNC and its potential relationship with humus components in composting remains uncertain. During a 45-day chicken manure composting study with and without biochar, MNC ranged from 24.9 to 77.9 g/kg and increased significantly by 80.9 % to 133 %. MNC constituted 5.77 % to 21.3 % of total organic C, with bacterial/fungal necromass C ratio ranging from 0.82 to 1.78. The MNC/humus C ratio ranged from 0.15 to 0.55, and humic acid C showed significant positive associations with bacterial necromass C (R = 0.72) and fungal necromass C (R = 0.51). Biochar addition reduced electrical conductivity and moisture content, increased pH, and induced microbial phosphorus limitation, thereby enhancing MNC content by 29.2 % and promoting humification. Our study is the first to elucidate the relationship between microbial necromass and humus substances, providing fundamental data for advancing the microbial carbon pump theory in composting.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2024.131258DOI Listing

Publication Analysis

Top Keywords

microbial necromass
12
necromass carbon
8
potential relationship
8
chicken manure
8
biochar addition
8
necromass
6
mnc
5
variation microbial
4
carbon potential
4
relationship humification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!