Microbial intestinal dysbiosis drives long-term allergic susceptibility by sculpting an ILC2-B1 cell-innate IgE axis.

J Allergy Clin Immunol

School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada; Center for Heart Lung Innovation, St Paul's Hospital, Vancouver, British Columbia, Canada. Electronic address:

Published: November 2024

Background: The abundance and diversity of intestinal commensal bacteria influence systemic immunity with impact on disease susceptibility and severity. For example, loss of short chain fatty acid (SCFA)-fermenting bacteria in early life (humans and mice) is associated with enhanced type 2 immune responses in peripheral tissues including the lung.

Objective: Our goal was to reveal the microbiome-dependent cellular and molecular mechanisms driving enhanced susceptibility to type 2 allergic lung disease.

Methods: We used low-dose vancomycin to selectively deplete SCFA-fermenting bacteria in wild-type mice. We then examined the frequency and activation status of innate and adaptive immune cell lineages with and without SCFA supplementation. Finally, we used ILC2-deficient and signal transducer and activator of transcription 6 (STAT6)-deficient transgenic mouse strains to delineate the cellular and cytokine pathways leading to enhanced allergic disease susceptibility.

Results: Mice with vancomycin-induced dysbiosis exhibited a 2-fold increase in lung ILC2 primed to produce elevated levels of IL-2, -5, and -13. In addition, upon IL-33 inhalation, mouse lung ILC2 displayed a novel ability to produce high levels of IL-4. These expanded and primed ILC2s drove B1 cell expansion and IL-4-dependent production of IgE that in turn led to exacerbated allergic inflammation. Importantly, these enhanced lung inflammatory phenotypes in mice with vancomycin-induced dysbiosis were reversed by administration of dietary SCFA (specifically butyrate).

Conclusion: SCFAs regulate an ILC2-B1 cell-IgE axis. Early-life administration of vancomycin, an antibiotic known to deplete SCFA-fermenting gut bacteria, primes and amplifies this axis and leads to lifelong enhanced susceptibility to type 2 allergic lung disease.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaci.2024.07.023DOI Listing

Publication Analysis

Top Keywords

scfa-fermenting bacteria
8
enhanced susceptibility
8
susceptibility type
8
type allergic
8
allergic lung
8
deplete scfa-fermenting
8
mice vancomycin-induced
8
vancomycin-induced dysbiosis
8
lung ilc2
8
allergic
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!