A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3106
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Self-folding RCA product into a parallel monolayer DNA nanoribbon and woven into a nano-fence structure by a short bridge strand. | LitMetric

Self-folding RCA product into a parallel monolayer DNA nanoribbon and woven into a nano-fence structure by a short bridge strand.

J Colloid Interface Sci

Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, PR China; Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, PR China. Electronic address:

Published: January 2025

AI Article Synopsis

  • The text discusses advancements in DNA origami nanotechnology, focusing on a method to create patterned self-assembled nanostructures using rolling circle amplification products (RPs).
  • This new approach simplifies construction by using fewer DNA components, allowing for self-folding into grid-patterned ribbons without the need for numerous staple strands.
  • The resulting DNA framework (FP) can be easily modified for precise placement of nanoparticles and proteins, paving the way for applications in biotechnology, nanomedicine, and other fields requiring precise molecular organization.

Article Abstract

The universal programmed construction of patterned periodic self-assembled nanostructures is a technical challenge in DNA origami nanotechnology but has numerous potential applications in biotechnology and biomedicine. In order to circumvent the dilemma that traditional DNA origami requires a long unusual single-stranded virus DNA as the scaffold and hundreds or even thousands of short strands as staples, we report a method for constructing periodically-self-folded rolling circle amplification products (RPs). The repeating unit is designed to have 3 intra-unit duplexes (inDP1,2,3) and 2 between-unit duplexes (buDP1,2). Based on the complementary pairing of bases, RPs each can self-fold into a periodic grid-patterned ribbon (GR) without the help of any auxiliary oligonucleotide staple. Moreover, by using only an oligonucleotide bridge strand, the GRs are connected together into the larger and denser planar nano-fence-shaped product (FP), which substantially reduces the number of DNA components compared with DNA origami and eliminates the obstacles in the practical application of DNA nanostructures. More interestingly, the FP-based DNA framework can be easily functionalized to offer spatial addressability for the precise positioning of nanoparticles and guest proteins with high spatial resolution, providing a new avenue for the future application of DNA assembled framework nanostructures in biology, material science, nanomedicine and computer science that often requires the ordered organization of functional moieties with nanometer-level and even molecular-level precision.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.013DOI Listing

Publication Analysis

Top Keywords

dna origami
12
dna
9
bridge strand
8
application dna
8
self-folding rca
4
rca product
4
product parallel
4
parallel monolayer
4
monolayer dna
4
dna nanoribbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!