Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The intestinal microbiome during infancy and childhood has distinct metabolic functions and microbial composition compared to adults. We recently published a gnotobiotic mouse model of the pre-weaning microbiome (PedsCom), which retains a pre-weaning configuration during the transition from a milk-based diet to solid foods, leads to a stunted immune system, and increases susceptibility to enteric infection. Here, we compared the phylogenetic and metabolic relationships of the PedsCom consortium to two adult-derived gnotobiotic communities, Altered Schaedler Flora and Oligo-Mouse Microbiota 12 (Oligo-MM). We find that PedsCom contains several unique functions relative to these adult-derived mouse consortia, including differences in carbohydrate and lipid metabolism genes. Notably, amino acid degradation metabolic modules are more prevalent among PedsCom isolates, which is in line with the ready availability of these nutrients in milk. Indeed, metabolomic analysis revealed significantly lower levels of total free amino acids and lower levels of specific amino acids abundant in milk (e.g. glutamine and glutamic acid) in the intestinal contents of adult PedsCom colonized mice compared to Oligo-MM controls. Metabolomic analysis of pre-weaning intestinal contents also showed lower levels of amino acids that are replete in milk compared to germ-free controls. Thus, enhanced amino acid metabolism is a prominent feature of the pre-weaning microbiome that may facilitate design of early-life microbiome interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321411 | PMC |
http://dx.doi.org/10.1080/19490976.2024.2387875 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!