A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of gnotobiotic communities reveals milk-adapted metabolic functions and unexpected amino acid metabolism by the pre-weaning microbiome. | LitMetric

AI Article Synopsis

  • The intestinal microbiome in infants and children has different metabolic functions and compositions than in adults, leading to unique health implications.
  • A study using a mouse model (PedsCom) showed that the pre-weaning microbiome results in immune system stunting and increased vulnerability to infections during the transition from milk to solid foods.
  • Analysis revealed that PedsCom has distinct metabolic characteristics, particularly in amino acid metabolism, which could be important for developing interventions to optimize early-life microbiome health.

Article Abstract

The intestinal microbiome during infancy and childhood has distinct metabolic functions and microbial composition compared to adults. We recently published a gnotobiotic mouse model of the pre-weaning microbiome (PedsCom), which retains a pre-weaning configuration during the transition from a milk-based diet to solid foods, leads to a stunted immune system, and increases susceptibility to enteric infection. Here, we compared the phylogenetic and metabolic relationships of the PedsCom consortium to two adult-derived gnotobiotic communities, Altered Schaedler Flora and Oligo-Mouse Microbiota 12 (Oligo-MM). We find that PedsCom contains several unique functions relative to these adult-derived mouse consortia, including differences in carbohydrate and lipid metabolism genes. Notably, amino acid degradation metabolic modules are more prevalent among PedsCom isolates, which is in line with the ready availability of these nutrients in milk. Indeed, metabolomic analysis revealed significantly lower levels of total free amino acids and lower levels of specific amino acids abundant in milk (e.g. glutamine and glutamic acid) in the intestinal contents of adult PedsCom colonized mice compared to Oligo-MM controls. Metabolomic analysis of pre-weaning intestinal contents also showed lower levels of amino acids that are replete in milk compared to germ-free controls. Thus, enhanced amino acid metabolism is a prominent feature of the pre-weaning microbiome that may facilitate design of early-life microbiome interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321411PMC
http://dx.doi.org/10.1080/19490976.2024.2387875DOI Listing

Publication Analysis

Top Keywords

amino acid
12
pre-weaning microbiome
12
lower levels
12
amino acids
12
gnotobiotic communities
8
metabolic functions
8
acid metabolism
8
metabolomic analysis
8
intestinal contents
8
amino
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!