Predicting undetected native vascular plant diversity at a global scale.

Proc Natl Acad Sci U S A

Department of Biology, Stanford University, Stanford, CA 94305.

Published: August 2024

Vascular plants are diverse and a major component of terrestrial ecosystems, yet their geographic distributions remain incomplete. Here, I present a global database of vascular plant distributions by integrating species distribution models calibrated to species' dispersal ability and natural habitats to predict native range maps for 201,681 vascular plant species into unsurveyed areas. Using these maps, I uncover unique patterns of native vascular plant diversity, endemism, and phylogenetic diversity revealing hotspots in underdocumented biodiversity-rich regions. These hotspots, based on detailed species-level maps, show a pronounced latitudinal gradient, strongly supporting the theory of increasing diversity toward the equator. I trained random forest models to extrapolate diversity patterns under unbiased global sampling and identify overlaps with modeled estimations but unveiled cryptic hotspots that were not captured by modeled estimations. Only 29% to 36% of extrapolated plant hotspots are inside protected areas, leaving more than 60% outside and vulnerable. However, the unprotected hotspots harbor species with unique attributes that make them good candidates for conservation prioritization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348117PMC
http://dx.doi.org/10.1073/pnas.2319989121DOI Listing

Publication Analysis

Top Keywords

vascular plant
16
native vascular
8
plant diversity
8
modeled estimations
8
vascular
5
plant
5
diversity
5
hotspots
5
predicting undetected
4
undetected native
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!