Multidimensional Hybrid Metal Phosphonate Coordination Networks as Synergistic Anticorrosion Coatings.

Inorg Chem

Crystal Engineering, Growth and Design Laboratory, Department of Chemistry, University of Crete, Voutes Campus, Heraklion, Crete GR-71003, Greece.

Published: August 2024

In the technologically important field of anticorrosion coatings, it is imperative to form well-defined and characterized films to protect the metal surface from corrosion. Phosphonate-based corrosion mitigation approaches are currently being exploited. Herein, the synergistic action of alkaline-earth metal ions and two carboxy-diphosphonates, PAIBA [-bis(phosphonomethyl)-2-aminoisobutyric acid] and BPMGLY [-(phosphonomethyl)glycine], is explored. Also, a family of four novel hybrid metal phosphonate materials is reported, Mg-PAIBA, Ca-PAIBA, Sr-PAIBA, and Sr-Na-PAIBA, whose topological analysis revealed a variety of underlying networks with the 6,10T9, , SP 1-periodic net (4,4)(0,2), and unique topologies. The synergistic metal/carboxy-diphosphonate blends were tested for their anticorrosion performance on carbon steel at preselected concentrations (0.1-1.0 mM) and pH values (4.0-6.0). The results showed an enhanced inhibitory performance in the presence of metal cations at higher concentrations. The inhibition of corrosion at pH 5.0 in the presence of BPMGLY, PAIBA, and their combination with Sr was investigated in detail using electrochemical measurements. Enhanced inhibition was achieved with a 1:1 Sr/BPMGLY (or PAIBA) binary system. Polarization curves indicated that the system is a "mixed" inhibitor. This study widens the family of carboxyphosphonate coordination polymers, showing their potential as attractive hybrid coatings with anticorrosion performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351182PMC
http://dx.doi.org/10.1021/acs.inorgchem.4c02545DOI Listing

Publication Analysis

Top Keywords

hybrid metal
8
metal phosphonate
8
anticorrosion coatings
8
anticorrosion performance
8
metal
5
multidimensional hybrid
4
phosphonate coordination
4
coordination networks
4
networks synergistic
4
anticorrosion
4

Similar Publications

Hierarchical Selenium-Doped Nickel-Cobalt Hybrids on Carbon Paper for the Overall Water-Splitting Electrocatalytic System.

ACS Appl Mater Interfaces

January 2025

Department of Battery and Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea.

Designing and constructing hierarchically structured materials with heterogeneous compositions is the key to developing an effective catalyst for overall water-splitting applications. Herein, we report the fabrication of hollow-structured selenium-doped nickel-cobalt hybrids on carbon paper as a self-supported electrode (denoted as Se-Ni|Co/CP, where Ni|Co hybrids consist of nickel-cobalt alloy-incorporated nickel-cobalt oxide). The procedure involves direct growth of zeolitic imidazolate framework-67 (ZIF-67) on bimetal-based nickel-cobalt hydroxide (NiCoOH) electrodeposited on CP, followed by selenous etching and pyrolysis to obtain the final Se-Ni|Co/CP electrocatalytic system.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

In this study, a new hybrid nanoparticle composed of magnesium hydroxide and copper oxide (Mg(OH)/CuO) with an optimized ratio of magnesium (Mg) to copper (Cu) was designed and incorporated into a 3D-printed scaffold made of polycaprolactone (PCL) and gelatin. These hybrid nanostructures (MCNs) were prepared using a green, solvent-free method. Their topography, surface morphology, and structural properties were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Pressure treatment enables white-light emission in Zn-IPA MOF via asymmetrical metal-ligand chelate coordination.

Nat Commun

January 2025

State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.

Metal-organic frameworks that feature hybrid fluorescence and phosphorescence offer unique advantages in white-emitting communities based on their multiple emission centers and high exciton utilization. However, it poses a substantial challenge to realize superior white-light emission in single-component metal-organic frameworks without encapsulating varying chromophores or integrating multiple phosphor subunits. Here, we achieve a high-performance white-light emission with photoluminescence quantum yield of 81.

View Article and Find Full Text PDF

Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!