In vertebrate retina, individual neurons of the same type are distributed regularly across the tissue in a pattern known as a mosaic. Establishment of mosaics during development requires cell-cell repulsion among homotypic neurons, but the mechanisms underlying this repulsion remain unknown. Here, we show that two mouse retinal cell types, OFF and ON starburst amacrine cells, establish mosaic spacing by using their dendritic arbors to repel neighboring homotypic somata. Using transgenic tools and single-cell labeling, we identify a developmental period when starburst somata are contacted by neighboring starburst dendrites; these serve to exclude somata from settling within the neighbor's dendritic territory. Dendrite-soma exclusion is mediated by MEGF10, a cell-surface molecule required for starburst mosaic patterning. Our results implicate dendrite-soma exclusion as a key mechanism underlying starburst mosaic spacing and raise the possibility that this could be a general mechanism for mosaic patterning across many cell types and species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440617 | PMC |
http://dx.doi.org/10.1016/j.celrep.2024.114615 | DOI Listing |
Res Child Adolesc Psychopathol
December 2024
Department of Psychology, The University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
Many students with attention-deficit/hyperactivity disorder (ADHD) have negative social experiences with classmates and teachers. The Making Socially Accepting Inclusive Classrooms (MOSAIC) intervention asked teachers to give positive attention strategies to students at risk for ADHD, at a 3:1 ratio compared to their peers. Evidence suggested that although MOSAIC students at risk for ADHD reported improved relationships with teachers, they were more disliked by their classroom peers, relative to counterparts in a typical practice control group.
View Article and Find Full Text PDFThe mantis shrimp is recognized to have one of the most powerful vision systems in nature, with up to 16 color-perceiving channels and the perception of linear and circular polarization detection. Inspired by its biostructure, we developed a snapshot polarization-hyperspectral camera (pHScam) to detect linear polarization in four directions and spectral signature in 21 bands of incident light, resulting in a 4D polar-spectral hypercube, represented as (,,,→). We introduced two bio-mimetic encoding mechanisms, viz.
View Article and Find Full Text PDFPLoS Genet
December 2024
Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic.
Polyploidy, the result of whole genome duplication (WGD), is widespread across the tree of life and is often associated with speciation and adaptability. It is thought that adaptation in autopolyploids (within-species polyploids) may be facilitated by increased access to genetic variation. This variation may be sourced from gene flow with sister diploids and new access to other tetraploid lineages, as well as from increased mutational targets provided by doubled DNA content.
View Article and Find Full Text PDFBrain
December 2024
Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
Facioscapulohumeral muscular dystrophy type 1 (FSHD1) patients exhibit marked variability in both age at onset (AAO) and disease severity. Early onset FSHD1 patients are at an increased risk of severe weakness, and early onset has been tentatively linked to the length of D4Z4 repeat units (RUs) and methylation levels. The present study explored potential relationships among genetic characteristics, AAO and disease severity in FSHD1.
View Article and Find Full Text PDFCurr Opin Genet Dev
December 2024
Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122 Milan, Italy; Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy. Electronic address:
The collection of Homo sapiens anatomical hallmarks hypothesized to support the 'human condition' did not appear at one specific time and place, but gradually, creating a reticulate evolutionary trajectory. The recent reconstruction of migration patterns and gene flows across different hominin species and populations draws a mosaic that we contend can be illuminated by genomic comparisons and specific experiments. Here, we first review key discoveries that could allow this experimental endeavor by describing recent advances in a variety of fields, stressing the importance of charting the current human neurodiversity as an interpretive substrate for evolutionary changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!