In this paper, a biological aerated filter (BAF) based on ferromanganese oxide-biochar (FMBC) was constructed to investigated the removal performance and mechanism for conventional pollutants and four kinds of antibiotic, in contrast of conventional zeolite loaded BAF (BAF-A) and bamboo biochar filled BAF (BAF-B). Results showed that the average removal efficiency of total nitrogen (TN), total phosphorus (TP) and antibiotics in a FMBC-BAF (named by BAF-C) were 52.97 ± 2.27%, 51.58 ± 1.92% and 70.36 ± 1.00% ~ 81.65 ± 0.99% respectively in running period (39-100 d), which were significantly higher than those of BAF-A and BAF-B. In the BAF-C, the expression of denitrification enzyme activities and the secretion of extracellular polymeric substance (EPS) especially polyprotein (PN) were effectively stimulated, as well as accelerated electron transfer activity (ETSA) and lower electrochemical impedance spectroscopy (EIS) were acquired. After 100 days of operation, the abundance of nitrogen, phosphorus and antibiotic removal functional bacteria like Sphingorhabdus (4.52%), Bradyrhizobium (1.98%), Hyphomicrobium (2.49%), Ferruginibacter (7.80%), unclassified_f_Blastoca tellaceae (1.84%), norank_f_JG30-KF-CM45 (6.82%), norank_f_norank_o_SBR1031 (2.43%), Nitrospira (2.58%) norank_f_Caldilineaceae (1.53%) and Micropruina (1.11%) were enriched. Mechanism hypothesis of enhanced performances of nutrients and antibiotics removal pointed that: The phosphorus was removed by adsorption and precipitation, antibiotics removal was mainly achieved through the combined action of adsorption and biodegradation, while nitrogen removal was realized by biologic nitrification and denitrification in a FMBC-BAF for aquaculture wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00449-024-03073-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!