The development of nonfullerene acceptors (NFAs), represented by ITIC, has contributed to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). Although tuning the electronic structures to reduce the exciton binding energy (E) is considered to promote photocharge generation, a rational molecular design for NFAs has not been established. In this study, we designed and developed two ITIC-based NFAs bearing spiro-substituted bithiophene or biphenyl units (named SpiroT-DCI and SpiroF-DCI) to tune the frontier molecular orbital (FMO) distribution of NFAs. While the highest occupied molecular orbitals (HOMOs) of SpiroF-DCI and ITIC are delocalized in the main π-conjugated framework, the HOMO of SpiroT-DCI is distributed on the bithiophene unit. Reflecting this difference, SpiroT-DCI exhibits a smaller E than either SpiroF-DCI or ITIC, and exhibits greater external quantum efficiency in single-component OSCs. Furthermore, SpiroT-DCI shows improved PCEs for bulk-heterojunction OSCs with a donor of PBDB-T, compared with that of either SpiroT-DCI or ITIC. Time-resolved spectroscopy measurements show that the photo-induced intermolecular charge separation is effective even in pristine SpiroT-DCI films. This study highlights the introduction of spiro-substituted bithiophene units that are effective in tuning the FMOs of ITIC, which is desirable for reducing the E and improving the PCE in OSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202412691DOI Listing

Publication Analysis

Top Keywords

spiro-substituted bithiophene
12
nonfullerene acceptors
8
bearing spiro-substituted
8
bithiophene units
8
organic solar
8
solar cells
8
frontier molecular
8
molecular orbital
8
reduce exciton
8
exciton binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!