Advancing mRNA subcellular localization prediction with graph neural network and RNA structure.

Bioinformatics

Faculty of Information Technology, Monash University, Melbourne, VIC 3800, Australia.

Published: August 2024

Motivation: The asymmetrical distribution of expressed mRNAs tightly controls the precise synthesis of proteins within human cells. This non-uniform distribution, a cornerstone of developmental biology, plays a pivotal role in numerous cellular processes. To advance our comprehension of gene regulatory networks, it is essential to develop computational tools for accurately identifying the subcellular localizations of mRNAs. However, considering multi-localization phenomena remains limited in existing approaches, with none considering the influence of RNA's secondary structure.

Results: In this study, we propose Allocator, a multi-view parallel deep learning framework that seamlessly integrates the RNA sequence-level and structure-level information, enhancing the prediction of mRNA multi-localization. The Allocator models equip four efficient feature extractors, each designed to handle different inputs. Two are tailored for sequence-based inputs, incorporating multilayer perceptron and multi-head self-attention mechanisms. The other two are specialized in processing structure-based inputs, employing graph neural networks. Benchmarking results underscore Allocator's superiority over state-of-the-art methods, showcasing its strength in revealing intricate localization associations.

Availability And Implementation: The webserver of Allocator is available at http://Allocator.unimelb-biotools.cloud.edu.au; the source code and datasets are available on GitHub (https://github.com/lifuyi774/Allocator) and Zenodo (https://doi.org/10.5281/zenodo.13235798).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361792PMC
http://dx.doi.org/10.1093/bioinformatics/btae504DOI Listing

Publication Analysis

Top Keywords

graph neural
8
advancing mrna
4
mrna subcellular
4
subcellular localization
4
localization prediction
4
prediction graph
4
neural network
4
network rna
4
rna structure
4
structure motivation
4

Similar Publications

A Serial MRI-based Deep Learning Model to Predict Survival in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma.

Radiol Artif Intell

January 2025

From the Department of Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou 510060, P. R. China (J.K., C.F.W., Z.H.C., G.Q.Z., Y.Q.W., L.L., Y.S.); Department of Radiation Therapy, Nanhai People's Hospital, The Sixth Affiliated Hospital, South China University of Technology, Foshan, China (J.Y.P., L.J.L.); and Department of Electronic Engineering, Information School, Yunnan University, Kunming, China (W.B.L.).

Purpose To develop and evaluate a deep learning-based prognostic model for predicting survival in locoregionally- advanced nasopharyngeal carcinoma (LA-NPC) using serial MRI before and after induction chemotherapy (IC). Materials and Methods This multicenter retrospective study included 1039 LA-NPC patients (779 male, 260 female, mean age 44 [standard deviation: 11]) diagnosed between April 2009 and December 2015. A radiomics- clinical prognostic model (Model RC) was developed using pre-and post-IC MRI and other clinical factors using graph convolutional neural networks (GCN).

View Article and Find Full Text PDF

Directed Electrostatics Strategy Integrated as a Graph Neural Network Approach for Accelerated Cluster Structure Prediction.

J Chem Theory Comput

January 2025

Advanced Artificial Intelligence Theoretical and Computational Chemistry Laboratory, School of Chemistry, University of Hyderabad, Hyderabad, Telangana 500046, India.

We present a directed electrostatics strategy integrated as a graph neural network (DESIGNN) approach for predicting stable nanocluster structures on their potential energy surfaces (PESs). The DESIGNN approach is a graph neural network (GNN)-based model for building structures of large atomic clusters with specific sizes and point-group symmetry. This model assists in the structure building of atomic metal clusters by predicting molecular electrostatic potential (MESP) topography minima on their structural evolution paths.

View Article and Find Full Text PDF

The determination of three-dimensional structures (3D structures) is crucial for understanding the correlation between the structural attributes of materials and their functional performance. X-ray absorption near edge structure (XANES) is an indispensable tool to characterize the atomic-scale local 3D structure of the system. Here, we present an approach to simulate XANES based on a customized 3D graph neural network (3DGNN) model, XAS3Dabs, which takes directly the 3D structure of the system as input, and the inherent relation between the fine structure of spectrum and local geometry is considered during the model construction.

View Article and Find Full Text PDF

Predicting the outcome of antiretroviral therapies (ART) for HIV-1 is a pressing clinical challenge, especially when the ART includes drugs with limited effectiveness data. This scarcity of data can arise either due to the introduction of a new drug to the market or due to limited use in clinical settings, resulting in clinical dataset with highly unbalanced therapy representation. To tackle this issue, we introduce a novel joint fusion model, which combines features from a Fully Connected (FC) Neural Network and a Graph Neural Network (GNN) in a multi-modality fashion.

View Article and Find Full Text PDF

Historically, Friedreich's Ataxia (FRDA) has been linked to a relatively preserved cerebellar cortex. Recent advances in neuroimaging have revealed altered cerebello-cerebral functional connectivity (FC), but the extent of intra-cerebellar FC changes and their impact on cognition remains unclear. This study investigates intra-cerebellar FC alterations and their cognitive implications in FRDA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!