Background: Currently, many emerging polycyclic aromatic hydrocarbons (PAHs) have been found to be widely present in the environment. However, little has been reported about their toxicity, particularly in relation to CYP1A1.

Objectives: This study aimed to explore the toxicity of naphtho[2,1-]pyrene (N21aP) and elucidate the mechanism underlying N21aP-induced expression of CYP1A1.

Methods: The concentration and sources of N21aP were detected and analyzed by gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) and diagnostic ratio analysis. Then the effects of CYP1A1 on the toxicity of N21aP were conducted in male wild-type (WT) and knockout mice exposed to N21aP (0.02, 0.2, and ) through intratracheal instillation. Further, the aryl hydrocarbon receptor (AhR) pathway was examined through luciferase and chromatin immunoprecipitation (ChIP) assays. -methyladenosine () modification levels were measured on global RNA and specifically on mRNA using dot blotting and methylated RNA immunoprecipitation-quantitative real-time polymerase chain reaction (MeRIP qRT-PCR), with validation by inhibitors, DAA and SAH. sites on were identified by bioinformatics and luciferase assays, and mRNA's interaction with IGF2BP3 was confirmed by RNA pull-down, luciferase, and RNA binding protein immunoprecipitation (RIP) assays.

Results: N21aP was of the same environmental origin as benzo[]pyrene (BaP) but was more stably present in the environment. N21aP could be metabolically activated by CYP1A1 to produce epoxides, causing DNA damage and further leading to lung inflammation. Importantly, in addition to the classical AhR pathway (i.e., BaP), N21aP also induced CYP1A1 expression with a posttranscriptional modification of in mRNA via the METTL14-IGF2BP3-CYP1A1 axis. Specifically, in the two recognition sites of METTL14 on the mRNA transcript (position at 2700 and 5218), a methylation site (position at 5218) in the 3'-untranslated region (UTR) was recognized by IGF2BP3, enhanced the stability of mRNA, and finally resulted in an increase in CYP1A1 expression.

Discussion: This study systematically demonstrated that in addition to AhR-mediated transcriptional regulation, N21aP, had a new additional mechanism of -mediated posttranscriptional modification, jointly contributing to CYP1A1 expression. Given that PAHs are the metabolic substrates of CYP1A1, this study not only helps to understand the significance of environment-genetic interactions for the toxicity of PAHs but also helps to better understand the health risks of the emerging PAHs at environmental exposure levels. https://doi.org/10.1289/EHP14055.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11318572PMC
http://dx.doi.org/10.1289/EHP14055DOI Listing

Publication Analysis

Top Keywords

cyp1a1 expression
12
posttranscriptional modification
12
n21ap
8
ahr pathway
8
cyp1a1
7
effects naphtho[21-]pyrene
4
naphtho[21-]pyrene exposure
4
exposure cyp1a1
4
expression
4
expression mechanistic
4

Similar Publications

Auxin Triggers AHR Pathway Activation in the Auxin-Inducible Degron System in Mammalian Cells.

Biochemistry (Mosc)

December 2024

Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.

The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells.

View Article and Find Full Text PDF

Dexlansoprazole acts as a disruptor of the aryl hydrocarbon receptor and ITE.

Food Chem Toxicol

January 2025

Department of Biochemical Science and Technology, National Chiayi University, Chiayi, 60004, Taiwan, ROC. Electronic address:

Dexlansoprazole, a proton pump inhibitor, is commonly used to treat gastro-oesophageal reflux disease and erosive esophagitis. The activated aryl hydrocarbon receptor (AhR) functions as a transcription factor by binding to the aryl hydrocarbon response element (AHRE) of its target genes, with cytochrome P450 (CYP) 1A1 being the most well-known target. In this study, we demonstrated that dexlansoprazole stimulates AhR activity, leading to increased CYP1A1 expression.

View Article and Find Full Text PDF

Airborne quasi-ultrafine particle samples were collected from different outdoor sites in Barcelona (NE Spain, 35 samples) and the Valencia subway (about 400 km south of Barcelona, 3 samples). Locations and schedules were designed to cover cold and warm seasons and to represent the impact of different types of transport (cars, trains, ships, and planes). Extracts from PTFE filters (methanol:dichloromethane 1:2) were used to test toxic effects in human cell lines (Induction of reactive oxygen species, inflammatory response) and in zebrafish embryos (expression of xenobiotic response-related genes, cyp1a1, gsa1 and hao1).

View Article and Find Full Text PDF

Irritable bowel syndrome (IBS) is a multifactorial condition with heterogeneous pathophysiology, including intestinal permeability alterations. The aim of the present study was to assess the ability of a probiotic blend (PB) consisting of two strains (CECT7484 and CECT7485) and one strain of (CECT7483) to recover the permeability increase induced by mediators from IBS mucosal biopsies and to highlight the underlying molecular mechanisms. Twenty-one IBS patients diagnosed according to ROME IV criteria (11 IBS-D and 10 IBS-M) and 7 healthy controls were enrolled.

View Article and Find Full Text PDF

Exposure to particulate matter (PM) in the air harms human health. Most studies on particulate matter's (PM) effects have primarily focused on respiratory and cardiovascular diseases. Recently, IL-32θ, one of the IL-32 isoforms, has been demonstrated to modulate cancer development and inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!