We present an efficient route to tetramethylalumoxane by the controlled hydrolysis of AlMe in the presence of pyridine. The AlMe(pyr) hydrolysis by 0.5 and 1 equiv. of HO has been followed with real-time H NMR. Based on high-level quantum-chemical calculations, we conclude that hypervalent, pentacoordinate aluminium species are critical in the first steps of hydrolysis.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc03672gDOI Listing

Publication Analysis

Top Keywords

controlled hydrolysis
8
hydrolysis alme
8
alme tetramethylalumoxane
4
tetramethylalumoxane incipient
4
incipient adducts
4
adducts water
4
water efficient
4
efficient route
4
route tetramethylalumoxane
4
tetramethylalumoxane controlled
4

Similar Publications

Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.

View Article and Find Full Text PDF

Dextran is an exopolysaccharide (EPS) with multifunctional applications in the food and pharmaceutical industries, primarily synthesized from . Dextran can be produced from dextrin through fermentation, utilizing its dextran dextrinase activity. This study examined how jar fermentor conditions impact the growth and enzyme activity of , with a focus on the effects of pH on dextran synthesis via bioconversion (without pH control, pH 4.

View Article and Find Full Text PDF

Amphiphilic bottlebrush block copolymers (BBCs) with tadpole-like, coil-rod architecture can be used to self-assemble into functional polymer nanodiscs directly in water. The hydrophobic segments of the BBC were tuned via the ratio of ethoxy-ethyl glycidyl ether (EE) to tetrahydropyranyl glycidyl ether (TP) within the grafted polymer sidechains. In turn, this variation controlled the sizes, pH-responsiveness, and drug loading capacity of the self-assembled nanodiscs.

View Article and Find Full Text PDF

Effect of (-)-epigallocatechin gallate palmitate complexation under mild temperature on the structure and nutritional functions of porous rice starch.

Food Chem

January 2025

Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China. Electronic address:

The correlation among the hierarchical structure, physicochemical properties, and nutritional functions of porous rice starch after absorbing and complexing with (-)-epigallocatechin gallate palmitate (P-EGCG) under mild temperatures at different reaction times were investigated. The P-EGCG loading rate (19.6 %-28.

View Article and Find Full Text PDF

N-glycosylation-modifications-driven conformational dynamics attenuate substrate inhibition of d-lactonohydrolase.

Bioorg Chem

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Education, School of Biotechnology, Jiangnan University, Wuxi 214122 China. Electronic address:

Achieving enzyme catalysis at high substrate concentrations is a substantial challenge in industrial biocatalysis, and the role of glycosylation in post-translational modifications that modulate enzyme substrate inhibition remains poorly understood. This study provides insights into the role of N-glycosylation in substrate inhibition by comparing the catalytic properties of d-lactonohydrolase (d-Lac) derived from Fusarium moniliforme expressed in prokaryotic and eukaryotic hosts. Experimental evidence indicates that recombinant d-Lac expressed in Pichia pastoris (PpLac-WT) exhibits higher hydrolysis rates at a substrate concentration of 400 g/L, with reduced substrate inhibition and enhanced stability compared to the recombinant d-Lac expressed in Escherichia coli (EcLac-WT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!