Hair loss affects men and women of all ages. Myokines, which are mainly secreted by skeletal muscles during exercise, have numerous health benefits. VEGF, IGF-1, FGF and irisin are reprehensive myokines. Although VEGF, IGF-1 and FGF are positively associated with hair growth, few studies have researched the effects of irisin on hair growth. Here, we investigated whether irisin promotes hair growth using in vitro, ex vivo and in vivo patch assays, as well as mouse models. We show that irisin increases proliferation, alkaline phosphatase (ALP) activity and mitochondrial membrane potential in human dermal papilla cells (hDPCs). Irisin activated the Wnt/β-catenin signalling pathway, thereby upregulating Wnt5a, Wnt10b and LEF-1, which play an important role in hair growth. Moreover, irisin enhanced human hair shaft elongation. In vivo, patch assays revealed that irisin promotes the generation of new hair follicles, accelerates entry into the anagen phase, and significantly increases hair growth in C57BL/6 mice. However, XAV939, a Wnt/β-catenin signalling inhibitor, suppressed the irisin-mediated increase in hair shaft and hair growth. These results indicate that irisin increases hair growth via the Wnt/β-catenin pathway and highlight its therapeutic potential in hair loss treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605494 | PMC |
http://dx.doi.org/10.1111/exd.15155 | DOI Listing |
Adv Exp Med Biol
January 2025
Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.
Skin regeneration, repair, and the promotion of hair growth are intricate and dynamic processes essential for preserving the overall health, functionality, and appearance of both skin and hair. These processes involve a coordinated interplay of cellular activities and molecular signaling pathways that ensure the maintenance and restoration of skin integrity and hair vitality. Recent advancements in regenerative medicine have underscored the significant role of mesenchymal stem cell (MSC)-derived exosomes as key mediators in these processes.
View Article and Find Full Text PDFBr J Dermatol
January 2025
Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan.
The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago.
View Article and Find Full Text PDFNed Tijdschr Geneeskd
January 2025
St. Antoniusziekenhuis, Nieuwegein. Afd. Interne Geneeskunde.
Excessive hair growth is a common and distressing complaint in women. It is imperative to differentiate excessive hair growth from hirsutism with possible other signs of virilization. Hirsutism is commonly attributed to polycystic ovary syndrome (PCOS).
View Article and Find Full Text PDFClin Cosmet Investig Dermatol
January 2025
Department of Dermatology and Venereology, Faculty of Medicine, Universitas Padjadjaran-Dr Hasan Sadikin Hospital, Bandung, West Java, Indonesia.
Epidermal growth factor receptor inhibitors (EGFRI) are biological factors used in several types of cancer, including non-small-cell lung cancers (NSCLC). One of the EGFR inhibitors that has been approved for NSCLC is afatinib. Dermatologic adverse events are the most commonly reported and may impair the patient's compliance to the therapy as it causes aesthetic discomfort and significantly impact the patient's quality of life.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
January 2025
College of Life Sciences, Inner Mongolia Agricultural University, Hohhot 010010, China; Inner Mongolia Autonomous Region Key Laboratory of Biomanufacturing, Hohhot 010010, China. Electronic address:
As a widely epigenetic modification, mA (N-methyladenosine, mA) can regulate the degradation, translation, and other biological functions of circRNAs through dynamic reversible processes. It plays an important role in regulating the life activities of biological organisms, particularly in cell differentiation, apoptosis, embryonic development, stress response, and innate immunity. In this study, bioinformatics analysis, qRT-PCR identification, FISH subcellular localization, and ceRNA network construction were performed on mA modified circRNAs regulating the apoptosis of secondary hair follicle cells of Inner Mongolia Albas white cashmere goats based on the skin mA sequencing data of secondary hair follicles in anagen and catagen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!