Enzymatic approaches for diversifying bioproducts from cellulosic biomass.

Chem Commun (Camb)

Laboratory of Applied Bionanotechnology, Department of Biotechnology, Lorena School of Engineering, University of São Paulo, Lorena, SP, Brazil.

Published: September 2024

Cellulosic biomass is the most abundantly available natural carbon-based renewable resource on Earth. Its widespread availability, combined with rising awareness, evolving policies, and changing regulations supporting sustainable practices, has propelled its role as a crucial renewable feedstock to meet the escalating demand for eco-friendly and renewable materials, chemicals, and fuels. Initially, biorefinery models using cellulosic biomass had focused on single-product platform, primarily monomeric sugars for biofuel. However, since the launch of the first pioneering cellulosic plants in 2014, these models have undergone significant revisions to adapt their biomass upgrading strategy. These changes aim to diversify the bioproduct portfolio and improve the revenue streams of cellulosic biomass biorefineries. Within this area of research and development, enzyme-based technologies can play a significant role by contributing to eco-design in producing and creating innovative bioproducts. This Feature Article highlights our strategies and recent progress in utilizing the biological diversity and inherent selectivity of enzymes to develop and continuously optimize sustainable enzyme-based technologies with distinct application approaches. We have advanced technologies for standalone platforms, which produce various forms of cellulose nanomaterials engineered with customized and enhanced properties and high yields. Additionally, we have tailored technologies for integration within a biorefinery concept. This biorefinery approach prioritizes designing tailored processes to establish bionanomaterials, such as cellulose and lignin nanoparticles, and bioactive molecules as part of a new multi-bioproduct platform for cellulosic biomass biorefineries. These innovations expand the range of bioproducts that can be produced from cellulosic biomass, transcending the conventional focus on monomeric sugars for biofuel production to include biomaterials biorefinery. This shift thereby contributes to strengthening the Bioeconomy strategy and supporting the achievement of several Sustainable Development Goals (SDGs) of the 2030 Agenda for Sustainable Development.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cc02114bDOI Listing

Publication Analysis

Top Keywords

cellulosic biomass
24
monomeric sugars
8
sugars biofuel
8
biomass biorefineries
8
enzyme-based technologies
8
sustainable development
8
cellulosic
7
biomass
7
enzymatic approaches
4
approaches diversifying
4

Similar Publications

This study focuses on developing biochar-based adsorbents with high adsorption capacity and rapid adsorption rates for removing boron from aqueous solutions. Hydroxy-enriched biochar composites (BC (carboxylated biochar), BC-PDA (polydopamine loaded biochar), MBC-PDA (polydopamine loaded magnetic biochar), BC-AlOOH (AlOOH loaded biochar), and BC-ZnCl (biochar modified by ZnCl)) were synthesized specifically for boron adsorption to utilize the superior adsorption capacity of biochar. All adsorbents were synthesized using straightforward experimental techniques from date palm cellulosic fibers as promising lignocellulose feedstock and subjected to various characterization methods.

View Article and Find Full Text PDF

The effects of low-intensity ultrasound on plants such as piezoelectric and ultrasonic water baths, on plants have been extensively studied. However, the specific effect of airborne ultrasound on plant cells has yet to be reported. The present study was conducted to elucidate the physiological responses of plant cells to airborne US.

View Article and Find Full Text PDF

Lignocellulosic biomass represents one of the most abundant renewable biological resources on earth. Despite its current underutilization as a source of high-value chemicals, it has promising applications in biomedical and other fields. Presently, lignocellulose is predominantly transformed into high-value-added products, e.

View Article and Find Full Text PDF

Valorization of wheat straw through enhancement of cellulose accessibility, xylan elimination and lignin removal by choline chloride:p-toluenesulfonic acid pretreatment.

Int J Biol Macromol

January 2025

School of Pharmacy, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China. Electronic address:

Different molar ratio of choline chloride (ChCl) and p-toluenesulfonic acid (p-TsOH) (2: 1, 1: 1 and 1: 2, mol: mol) were used to prepare deep eutectic solvents (ChCl: p-TsOH) for pretreating cellulose fibers to elevate cellulose accessibility, enhance xylan elimination, increase lignin removal and promote enzymatic digestion. ChCl: p-TsOH (1: 1, mol: mol) could effectually destroy the dense layout of wheat straw (WS) at 80 °C for 60 min. Cellulose crystallinity declined from 43.

View Article and Find Full Text PDF

A review of lignin as a precursor for macromonomers: Challenges and opportunities in utilizing agri-food waste.

Int J Biol Macromol

January 2025

Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy. Electronic address:

Lignocellulosic biomass, rich in cellulose, hemicellulose, and lignin, represents a promising renewable resource. However, lignin, a complex polyphenolic material, remains underutilized despite its surplus production. This review focuses on the conversion of lignin into macromonomers for polymer production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!