The results of relativistic calculations of nuclear magnetic resonance shielding tensors (σ) for the thallium monocation (Tl+), thallium hydride (TlH), and thallium halides (TlF, TlCl, TlBr, TlI, and TlAt) are presented as obtained within a four-component polarization propagator formalism and a two-component linear response approach within the zeroth-order regular approximation. In addition to a detailed analysis of relativistic effects performed in this work, some quantum electrodynamical (QED) effects on those nuclear magnetic resonance shieldings and other small contributions are estimated. A strong dependence of σ(Tl) on the bonding partner is found, together with a very weak dependence of QED effects with them. In order to explain the trends observed, the excitation patterns associated with relativistic ee (or paramagnetic-like) and pp (or diamagnetic-like) contributions to σ are analyzed. For this purpose, the electronic spin-free and spin-dependent contributions are separated within the two-component zeroth-order regular approximation, and the influence of spin-orbit coupling on involved molecular orbitals is studied, which allows for a thorough understanding of the underlying mechanisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0213653 | DOI Listing |
J Chem Theory Comput
January 2025
Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.
Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.
View Article and Find Full Text PDFWe present a comprehensive study on the best practices for integrating first principles simulations in experimental quadrupolar solid-state nuclear magnetic resonance (SS-NMR), exploiting the synergies between theory and experiment for achieving the optimal interpretation of both. Most high performance materials (HPMs), such as battery electrodes, exhibit complex SS-NMR spectra due to dynamic effects or amorphous phases. NMR crystallography for such challenging materials requires reliable, accurate, efficient computational methods for calculating NMR observables from first principles for the transfer between theoretical material structure models and the interpretation of their experimental SS-NMR spectra.
View Article and Find Full Text PDFFaraday Discuss
January 2025
Université Paris-Saclay, CEA, CNRS, NIMBE, 91191 Gif-sur-Yvette cedex, France.
Solid-state NMR has established itself as a cutting-edge spectroscopy for elucidating the structure of oxide glasses thanks to several decades of methodological and instrumental progress. First-principles calculations of NMR properties combined with molecular-dynamics (MD) simulations provides a powerful complementary approach for the interpretation of NMR data, although they still suffer from limitations in terms of size, time and high consumption of computational resources. We address this challenge by developing a machine-learning framework to boost predictive modelling of NMR spectra.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2024
Department of Chemistry, Norwegian University of Science and Technology, Trondheim 7491, Norway.
In this work, we present ab initio cavity quantum electrodynamics (QED) methods which include interactions with a static magnetic field and nuclear spin degrees of freedom using different treatments of the quantum electromagnetic field. We derive explicit expressions for QED-HF magnetizability, nuclear shielding, and spin-spin coupling tensors. We apply this theory to explore the influence of the cavity field on the magnetizability of saturated, unsaturated, and aromatic hydrocarbons, showing the effects of different polarization orientations and coupling strengths.
View Article and Find Full Text PDFJ Phys Chem A
September 2024
Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), D-81377 Munich, Germany.
An efficient method for the computation of nuclear magnetic resonance (NMR) shielding tensors within the random phase approximation (RPA) is presented based on our recently introduced resolution-of-the-identity (RI) atomic orbital RPA NMR method [Drontschenko, V. 2023, 19, 7542-7554] utilizing Cholesky decomposed density type matrices and employing an attenuated Coulomb RI metric. The introduced sparsity is efficiently exploited using sparse matrix algebra.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!