The orientation dependence of cavity-modified chemistry.

J Chem Phys

Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA.

Published: August 2024

Recent theoretical studies have explored how ultra-strong light-matter coupling can be used as a handle to control chemical transformations. Ab initio cavity quantum electrodynamics calculations demonstrate that large changes to reaction energies or barrier heights can be realized by coupling electronic degrees of freedom to vacuum fluctuations associated with an optical cavity mode, provided that large enough coupling strengths can be achieved. In many cases, the cavity effects display a pronounced orientational dependence. Here, we highlight the critical role that geometry relaxation can play in such studies. As an example, we consider a recent work [Pavošević et al., Nat. Commun. 14, 2766 (2023)] that explored the influence of an optical cavity on Diels-Alder cycloaddition reactions and reported large changes to reaction enthalpies and barrier heights, as well as the observation that changes in orientation can inhibit the reaction or select for one reaction product or another. Those calculations used fixed molecular geometries optimized in the absence of the cavity and fixed relative orientations of the molecules and the cavity mode polarization axis. Here, we show that when given a chance to relax in the presence of the cavity, the molecular species reorient in a way that eliminates the orientational dependence. Moreover, in this case, we find that qualitatively different conclusions regarding the impact of the cavity on the thermodynamics of the reaction can be drawn from calculations that consider relaxed vs unrelaxed molecular structures.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0216993DOI Listing

Publication Analysis

Top Keywords

cavity
8
large changes
8
changes reaction
8
barrier heights
8
optical cavity
8
cavity mode
8
orientational dependence
8
reaction
5
orientation dependence
4
dependence cavity-modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!