Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Study Objectives: From 2019-2023, the United States Food and Drug Administration has cleared 9 novel obstructive sleep apnea-detecting wearables for home sleep apnea testing, with many now commercially available for sleep clinicians to integrate into their clinical practices. To help clinicians comprehend these devices and their functionalities, we meticulously reviewed their operating mechanisms, sensors, algorithms, data output, and related performance evaluation literature.
Methods: We collected information from PubMed, United States Food and Drug Administration clearance documents, ClinicalTrials.gov, and web sources, with direct industry input whenever feasible.
Results: In this "device-centered" review, we broadly categorized these wearables into 2 main groups: those that primarily harness photoplethysmography data and those that do not. The former include the peripheral arterial tonometry-based devices. The latter was further broken down into 2 key subgroups: acoustic-based and respiratory effort-based devices. We provided a performance evaluation literature review and objectively compared device-derived metrics and specifications pertinent to sleep clinicians. Detailed demographics of study populations, exclusion criteria, and pivotal statistical analyses of the key validation studies are summarized.
Conclusions: In the foreseeable future, these novel obstructive sleep apnea-detecting wearables may emerge as primary diagnostic tools for patients at risk for moderate-to-severe obstructive sleep apnea without significant comorbidities. While more devices are anticipated to join this category, there remains a critical need for cross-device comparison studies as well as independent performance evaluation and outcome research in diverse populations. Now is the moment for sleep clinicians to immerse themselves in understanding these emerging tools to ensure our patient-centered care is improved through the appropriate implementation and utilization of these novel sleep technologies.
Citation: Chiang AA, Jerkins E, Holfinger S, et al. OSA diagnosis goes wearable: are the latest devices ready to shine? . 2024;20(11):1823-1838.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530974 | PMC |
http://dx.doi.org/10.5664/jcsm.11290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!