The gut microbiota is widely implicated in host health and disease, inspiring translational efforts to implement our growing body of knowledge in clinical settings. However, the need to characterize gut microbiota by its genomic content limits the feasibility of rapid, point-of-care diagnostics. The microbiota produces a diverse array of xenobiotic metabolites that disseminate into tissues, including volatile organic compounds (VOCs) that may be excreted in breath. We hypothesize that breath contains gut microbe-derived VOCs that inform the composition and metabolic state of the microbiota. To explore this idea, we compared the breath volatilome and fecal gut microbiomes of 27 healthy children and found that breath VOC composition is correlated with gut microbiomes. To experimentally interrogate this finding, we devised a method for capturing exhaled breath from gnotobiotic mice. Breath volatiles are then profiled by gas-chromatography mass-spectrometry (GC-MS). Using this novel methodology, we found that the murine breath profile is markedly shaped by the composition of the gut microbiota. We also find that VOCs produced by gut microbes in pure culture can be identified in the breath of mice monocolonized with the same bacteria. Altogether, our studies identify microbe-derived VOCs excreted in breath and support a mechanism by which gut bacterial metabolism directly contributes to the mammalian breath VOC profiles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312666 | PMC |
http://dx.doi.org/10.1101/2024.08.02.24311413 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!