Squatting is a common motion in activities of daily living and is frequently used in training programs. Squatting requires a shift of the body in both vertical and anterior-posterior directions. Postural control during squatting is considered a mixed strategy; however, details and roles of the trunk and lower limb joints are unclear. The purpose of this study was to investigate the relationship among the kinematics of the lower limb, the trunk and the center of mass (COM) descent during squatting. Twenty-six healthy young adults performed repeated parallel squats. Lower limb joint and trunk angles and the COM were analyzed using a 3D motion analysis system. We evaluated the relationship between the kinematics and the squat depth by performing correlation analysis and multiple linear regression analysis. The ankle was the first to reach its maximum angle, and the remaining joints reached their maximum angles at the maximum squat depth. The knee joint motion and the squat depth were significantly correlated and there was a correlation between the hip and the ankle joint motion and the anteroposterior displacement of the COM during squatting. Multivariate linear regression analysis indicated that squat depth was predicted by both the knee and ankle motion and that anteroposterior displacement of the COM was predicted by the hip, ankle, and knee joint motion. The knees contributed to the vertical COM motion during squatting, while the hips contributed to the COM motion in the anteroposterior direction. On the other hand, the ankles contributed to COM motions in both the vertical and anteroposterior directions during squatting.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307177 | PMC |
http://dx.doi.org/10.5114/jhk/183066 | DOI Listing |
Med Sci Sports Exerc
October 2024
School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH.
Purpose: Motion capture technology is quickly evolving providing researchers, clinicians, and coaches with more access to biomechanics data. Markerless motion capture and inertial measurement units (IMUs) are continually developing biomechanics tools that need validation for dynamic movements before widespread use in applied settings. This study evaluated the validity of a markerless motion capture, IMU, and red, green, blue, and depth (RGBD) camera system as compared to marker-based motion capture during countermovement jumps, overhead squats, lunges, and runs with cuts.
View Article and Find Full Text PDFClin Biomech (Bristol)
December 2024
Scottish Rite for Children, Dallas, TX, USA.
Background: Adolescent hip dysplasia is a condition that often affects hip mechanics, leading to loss of function, pain, and early onset osteoarthritis. Objective literature investigating functional activities remains sparse within this population. A traditional body weight deep squat has translation to everyday tasks, is a clinical screening tool, and is also a common pre/rehabilitation exercise.
View Article and Find Full Text PDFSeven species of galatheoid crustaceans, including five new species, are reported from the southeastern Arabian Sea, southwestern Bay of Bengal, and western Andaman Sea, India, based on material collected from 56 to 113 m depths. Distinctions between the five new species (Galathea bharata sp. nov.
View Article and Find Full Text PDFJ Bodyw Mov Ther
October 2024
Department of Computer Science, Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland.
Introduction: Visual scales offer a cost-effective alternative to complex biomechanical analysis for single-leg squat (SLS) performance. There is a lack of consensus on the relationship between visual rating and kinematic measurements in physical therapy assessments. The study aimed to compare kinematic parameters, muscle activity and timing between good and poor performers of SLS, selected based on visual evaluation of movement.
View Article and Find Full Text PDFDis Aquat Organ
November 2024
Grupo de Investigaciones en Crustáceos y Pesquerías, Instituto de Desarrollo Costero, Universidad Nacional de la Patagonia San Juan Bosco (UNPSJB), Comodoro Rivadavia CP 9000, Chubut, Argentina.
The bopyrid Pseudione galacanthae is an ectoparasite of the squat lobster Grimothea gregaria (Munida gregaria). This study aimed to analyze the spatial variations in the prevalence of P. galacanthae in Argentine Patagonia and the potential drivers shaping this variability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!