Background: A novel radiation protection system has recently been shown to shield the primary operator from scatter radiation, but whether it shields other members of the catheterization laboratory team remains unknown.

Methods: Radiation exposure data were collected prospectively in 50 coronary angiography cases, in which 25 were completed using standard radiation protection and 25 with a novel system consisting of a series of rigid shields and flexible radiation-resistant drapes. Radiation doses, measured with real-time dosimeters, were compared between the 2 groups.

Results: There were no significant differences between groups with respect to patient or procedural characteristics, including air kerma ( = .97) and dose area product ( = .17). The primary operator received a median head-level radiation dose of 0.0 [0.0, 0.0] μSv with the novel radiation protection system and 2.1 [0.7, 3.3] μSv with standard radiation protection ( < .001). Scrub technologists had a median head-level radiation dose of 0.0 [0.0, 0.0] μSv with the novel radiation protection system and 0.3 [0.1, 0.4] μSv with standard radiation protection ( < .001). The median head-level radiation dose among circulating nurses was 0.0 [0.0, 0.0] μSv with the novel radiation protection system and was 0.1 [0.0, 0.2] μSv with standard radiation protection ( < .001).

Conclusions: Compared to standard radiation protection with lead aprons, use of a novel radiation protection system during coronary angiography was associated with significantly lower head-level radiation doses among all members of the catheterization laboratory team.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11307758PMC
http://dx.doi.org/10.1016/j.jscai.2023.101109DOI Listing

Publication Analysis

Top Keywords

radiation protection
44
novel radiation
24
protection system
20
standard radiation
20
radiation
19
head-level radiation
16
radiation doses
12
catheterization laboratory
12
laboratory team
12
median head-level
12

Similar Publications

Background: Proton therapy (PRT) is an innovative radiotherapeutic modality for the treatment of cancer with unique ballistic properties. The depth-dose distribution of a proton beam reduces exposure of healthy tissues to radiations, compared with photon-therapy (XRT). To date, only few indications for proton-therapy, like pediatric cancers, chordomas, or intra-ocular neoplasms, are reimbursed by Health systems.

View Article and Find Full Text PDF

Background: There is a growing interest in exploring the biological characteristics of nanoparticles and exploring their potential applications. However, there is still a lack of research into the potential genotoxicity of fullerene derivatives and their impact on gene expression in human cells. In this study, we investigated the effects of a water-soluble fullerene derivative, C60[C6H4SCH2COOK]5H (F1), on human embryonic lung fibroblasts (HELF).

View Article and Find Full Text PDF

Extramedullary Intradural Primary Spinal Angiosarcoma: A Case Study.

Cureus

November 2024

Neuroradiology, Instituto Português de Oncologia do Porto Francisco Gentil, Porto, PRT.

Angiosarcoma is a rare soft tissue sarcoma, namely when it presents as a primary intradural extramedullary spinal neoplasm, with only one case of non-vertebral origin reported in the literature. We present the case of a 51-year-old woman with neurological symptoms of paraparesis and constipation who underwent a magnetic resonance imaging (MRI) that revealed a well-demarcated, predominantly homogeneous, intensely enhancing intradural extramedullary lesion in T2-weighted images. Histology, immunohistochemistry, and genetics of the lesion showed an angiosarcoma.

View Article and Find Full Text PDF

One radiation protection measure for medical personnel in X-ray fluoroscopy is using radiation protective plates. A real-time interactive tool visualizing radiation-dose distribution varied with the protective plate position will help greatly to train medical personnel to protect themselves from unnecessary radiation exposure. Monte Carlo simulation can calculate the individual interactions between radiations and objects in the X-ray room, and reproduce the complex dose distribution inside the room.

View Article and Find Full Text PDF

Dynamic Metabolic Characterization of Lung Tissues in Rats Exposed to Whole-Thorax Irradiation Based on GC-MS.

Biomed Chromatogr

January 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China.

An animal model of radiation-induced lung injury (RILI) was established using female rats given sublethal whole-thorax X-ray irradiation (15 Gy) at a dose rate of 2.7 Gy/min. The rats were studied for up to day 45 and compared with sham-irradiated controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!