A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterizing behavioural differentiation in gene regulatory networks with representation graphs. | LitMetric

Characterizing behavioural differentiation in gene regulatory networks with representation graphs.

NAR Genom Bioinform

Institute of Mathematics and Computer Science, University of Latvia, Raina bulvaris 29, Riga LV1459, Latvia.

Published: September 2024

We introduce the formal notion of representation graphs, encapsulating the state space structure of gene regulatory network models in a compact and concise form that highlights the most significant features of stable states and differentiation processes leading to distinct stability regions. The concept has been developed in the context of a hybrid system-based gene network modelling framework; however, we anticipate that it can also be adapted to other approaches of modelling gene networks in discrete terms. We describe a practical algorithm for representation graph computation as well as two case studies demonstrating their real-world application and utility. The first case study presents models for three phage viruses. It shows that the process of differentiation into lytic and lysogenic behavioural states for all these models is described by the same representation graph despite the distinctive underlying mechanisms for differentiation. The second case study shows the advantages of our approach for modelling the process of myeloid cell differentiation from a common progenitor into different cell types. Both case studies also demonstrate the potential of the representation graph approach for deriving and validating hypotheses about regulatory interactions that must be satisfied for biologically viable behaviours.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310862PMC
http://dx.doi.org/10.1093/nargab/lqae102DOI Listing

Publication Analysis

Top Keywords

representation graph
12
gene regulatory
8
representation graphs
8
case studies
8
case study
8
differentiation
5
representation
5
characterizing behavioural
4
behavioural differentiation
4
gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!