Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Successful performance in long distance race requires both high efficiency and stability. Previous research has demonstrated the high running efficiency of trained runners, but no prior study quantitatively addressed their orbital stability. In this study, we evaluated the efficiency and orbital stability of 8 professional long-distance runners and compared them with those of 8 novices. We calculated the cost of transport and normalized mechanical energy to assess physiological and mechanical running efficiency, respectively. We quantified orbital stability using Floquet Multipliers, which assess how fast a system converges to a limit cycle under perturbations. Our results show that professional runners run with significantly higher physiological and mechanical efficiency but with weaker orbital stability compared to novices. This finding is consistent with the inevitable trade-off between efficiency and stability; increase in orbital stability necessitates increase in energy dissipation. We suggest that professional runners have developed the ability to exploit inertia beneficially, enabling them to achieve higher efficiency partly at the cost of sacrificing orbital stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315134 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2024.e34707 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!