Introduction: This study aimed to investigate the fungal growth and diversity in the Sabkha marsh. The anti-bacterial properties of the isolated fungi were assessed using an agar disk diffusion assay, and the crude extracts were tested for their anticancer activities. Liquid chromatography-mass spectrometry was employed to identify the active compounds of the fungal secondary metabolites. In-silico studies were conducted to predict the toxicity, pharmacokinetic properties, and safety profiles of the identified compounds.

Results: The analysis revealed that the isolated fungi belonged to the Aspergillus species, specifically and . The crude extract of exhibited significant anticancer activity against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Liquid chromatography-mass spectrometry analysis identified several compounds in the fungal isolates. In , the compounds included Aflavinine, Dihydro-24-hydroxyaflavinine, Phomaligin A, Hydroxysydonic acid, Gregatin B, Pulvinulin A, Chrysogine, Aspergillic acid, Aflatoxin B1, and Aflatoxin G1. In , the compounds identified were atromentin, fonsecin B, firalenone, rubrofusarin, aurasperone E, aurasperone D, aurasperone C, nigerone, and αβ-dehydrocurvularin.

Conclusion: This study demonstrated promising fungal growth and diversity in the Sabkha marsh, with Aspergillus species being the most prevalent. The fungal crude extract showed anticancer activities against various cancer cell lines, while the antifungal activities against pathogenic bacteria varied between the two fungi. Future research should focus on investigating the antimicrobial activities of these fungi against multidrug-resistant bacteria and exploring the genetic changes in bacteria and cancer cells treated with these fungal extracts. Additionally, it is important to test the anticancer activity of the active compounds separately to determine which one is the active agent against cancer cells. This information can be used in drug development trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316488PMC
http://dx.doi.org/10.2147/BTT.S472491DOI Listing

Publication Analysis

Top Keywords

aspergillus species
12
sabkha marsh
12
fungal growth
8
growth diversity
8
diversity sabkha
8
isolated fungi
8
anticancer activities
8
liquid chromatography-mass
8
chromatography-mass spectrometry
8
active compounds
8

Similar Publications

Concordance of non-invasive plasma cell-free DNA with invasive diagnostics for diagnosis of invasive fungal disease.

Clin Infect Dis

January 2025

Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA.

Background: Mold plasma cell-free DNA (cfDNA) PCR is a promising non-invasive diagnostic modality for early diagnosis of invasive mold disease (IMD) in immunocompromised patients. Although mold cfDNA PCR has been shown to be highly accurate, the value of invasive procedures to collect specimens for conventional fungal diagnostics following plasma cfDNA testing remains unclear.

Methods: This retrospective single-center cohort study included patients with mold plasma cfDNA PCR performed 7 days before or 2 days after invasive specimen collection.

View Article and Find Full Text PDF

A highly efficient mixed strain fermentation strategy to produce 11α-Hydroxyandrost-4-ene-3,17-dione from phytosterols.

J Biotechnol

January 2025

Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China. Electronic address:

11α-Hydroxyandrost-4-ene-3,17-dione (11α-OH AD) is an essential steroid hormone drug intermediate that exhibits low biotransformation efficiency. In this study, a mixed-strain fermentation strategy was established for the efficient production of 11α-OH AD from phytosterols (PS). Initially, strains were screened for efficient transformation of AD to produce 11α-OH AD.

View Article and Find Full Text PDF

Invasive pulmonary infections are a significant cause of morbidity and mortality in patients with hematological malignancies and hematopoietic stem cell transplantation (HCT) recipients. A delay in identifying a causative agent may result in late initiation of appropriate treatment and adverse clinical outcomes. We examine the diagnostic utility of PCR-based assays in evaluating invasive pulmonary infections from bronchoalveolar lavage (BAL).

View Article and Find Full Text PDF

Metabolites, Biotransformation, and Plant-Growth Dual Regulatory Activity from Uncovered by the Fermentation Interaction with a Host.

J Agric Food Chem

January 2025

Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Characteristic Plant Extraction Laboratory, Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China.

One new azaphilone derivative () from in ordinary medium, one new phthalide derivative (), a microbial transformation product of ingredients by , a pair of new austdiol enantiomers (+)- and (-)-, one new epsilon-caprolactone derivative (), and one new ophiobolin-type sesterterpenoid () from the in host medium were reported. The structures were determined by spectroscopic analysis and single-crystal X-ray diffraction. Compounds - could completely inhibit the germination of rice seeds at 50 μg/mL, which is higher than that of the positive control.

View Article and Find Full Text PDF

Fungal contamination in drinking water has garnered considerable attention over the past few decades, especially considering the detrimental consequences of pathogenic fungal species on both human and animal health. The formation of biofilms by certain species is a considerable factor contributing to the emergence of severe fungal infections. This research was designed to isolate and identify fungi, particularly those capable of forming biofilms from 150 samples of drinking water sourced from various locations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!