Background: Recent research has demonstrated that the dorsal striatum is directly associated with the integration of cognitive, sensory-motor, and motivational/emotional data. Disruptions in the corticostriatal circuit have been implicated in the pathophysiology of psychosis. The dorsal striatum was reported to show lateralized pathology in psychotic disorders. In this study, we aimed to analyze the laterality of the dorsal striatum with texture analysis of T2-weighted magnetic resonance imaging (MRI) images from schizoaffective disorder (SAD) patients.
Methods: Twenty SAD patients, met the inclusion criteria and had available cranial MRI data were assigned as the patient group. Twenty healthy individuals were determined as the control group. Texture analysis values were obtained from striatum region of interests (ROI) generated from T2-weighted MRI images. Data are presented as mean and standard deviation. The suitability of the data for normal distribution was analyzed with the Kolmogorov-Smirnov test. Analysis of variance (ANOVA) test (Post Hoc TUKEY) was employed to compare the group data based on test findings.
Results: There was no significant difference between the groups in terms of gender and age. There were differences in the values of texture analysis parameters of both caudate and putamen nuclei in comparison to controls. We identified differences in the left dorsal striatum nuclei in SAD. The differences in the putamen were more and more pronounced than in the caudate.
Conclusions: Texture analyses suggest that the left dorsal striatum nuclei may be different in SAD patients. Further studies are needed to determine the pathophysiology of SAD and how it may affect disease treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319760 | PMC |
http://dx.doi.org/10.62641/aep.v52i4.1629 | DOI Listing |
Sci Rep
December 2024
Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
Alcohol use disorder (AUD) is a chronic relapsing brain disorder characterized by an impaired ability to stop or control alcohol consumption despite adverse social, occupational, or health consequences. AUD affects nearly one-third of adults at some point during their lives, with an associated cost of approximately $249 billion annually in the U.S.
View Article and Find Full Text PDFSynapse
January 2025
Department of Science, De La Salle College, Institute of the Brothers of the Christian Schools, Toronto, Ontario, Canada.
Alcohol consumption is known to affect dopamine (DA) release in the brain, with significant implications for understanding addiction and its neurobiological underpinnings. This meta-analysis examined the effects of acute alcohol administration on striatal DA release in healthy humans as measured with [C]-raclopride positron emission tomography (PET). Oral alcohol administration was associated with a significant reduction in [C]-raclopride binding potential (BP) in the ventral striatum (Cohen's d = -0.
View Article and Find Full Text PDFNeurobiol Dis
December 2024
Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada. Electronic address:
Background: Altered balance between striatal direct and indirect pathways contributes to early motor, cognitive and psychiatric symptoms in Huntington disease (HD). While degeneration of striatal D2-type dopamine receptor (D2)-expressing indirect pathway medium spiny neurons (iMSNs) occurs prior to that of D1-type dopamine receptor (D1)-expressing direct pathway neurons, altered corticostriatal synaptic function precedes degeneration. D2-mediated signaling on iMSNs reduces their excitability and promotes endocannabinoid (eCB) synthesis, suppressing glutamate release from cortical afferents.
View Article and Find Full Text PDFCell Rep
December 2024
Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China. Electronic address:
In the dorsal striatum (DS), the direct- and indirect-pathway striatal projection neurons (dSPNs and iSPNs) play crucial opposing roles in controlling actions. However, it remains unclear whether and how dSPNs and iSPNs provide distinct and specific contributions to decision-making, a process transforming sensory inputs to actions. Here, we perform causal interrogations on the roles of dSPNs and iSPNs in the posterior DS (pDS) in auditory-guided decision-making.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
Stressful experiences form stronger memories due to enhanced neural plasticity mechanisms linked to glucocorticoid hormones (cortisol in humans, corticosterone in rats). Among other neural structures, the dorsal striatum plays a role in the corticosterone-induced consolidation of stressful memories, particularly in the cued water maze task. Neural plasticity is related to mitochondrial activity due to the relevance of energy production and signaling mechanisms for functional and morphological neuronal adaptations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!