Current developments in elastic and acoustic metamaterials science.

Philos Trans A Math Phys Eng Sci

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, UK.

Published: September 2024

AI Article Synopsis

Article Abstract

The concept of metamaterial recently emerged as a new frontier of scientific research, encompassing physics, materials science and engineering. In a broad sense, a metamaterial indicates an engineered material with exotic properties not found in nature, obtained by appropriate architecture either at macro-scale or at micro-/nano-scales. The architecture of metamaterials can be tailored to open unforeseen opportunities for mechanical and acoustic applications, as demonstrated by an impressive and increasing number of studies. Building on this knowledge, this theme issue aims to gather cutting-edge theoretical, computational and experimental studies on elastic and acoustic metamaterials, with the purpose of offering a wide perspective on recent achievements and future challenges.This article is part of the theme issue, 'Current developments in elastic and acoustic metamaterials science (Part 2)'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11338561PMC
http://dx.doi.org/10.1098/rsta.2024.0038DOI Listing

Publication Analysis

Top Keywords

elastic acoustic
12
acoustic metamaterials
12
developments elastic
8
metamaterials science
8
theme issue
8
current developments
4
acoustic
4
metamaterials
4
science concept
4
concept metamaterial
4

Similar Publications

The present study focuses on the ground state mechanical, acoustic, thermodynamic and electronic transport properties of NaSbS polymorphs using the density functional theory (DFT) and semi-classical Boltzmann transport theory. The mechanical stability of the polymorphs is affirmed by the calculated elastic tensor. The calculated elastic properties asserted that all the polymorphs exhibit soft, brittle, anisotropic nature containing dominant covalent bonding.

View Article and Find Full Text PDF

In this paper, we demonstrate that torsional surface elastic waves can propagate along the curved surface of a metamaterial elastic rod (cylinder) embedded in a conventional elastic medium. The crucial parameter of the metamaterial rod is its elastic compliance s44(1)ω, which varies as a function of frequency ω analogously to the dielectric function εω in Drude's model of metals. As a consequence, the elastic compliance s44(1)ω can take negative values s44(1)ω<0 as a function of frequency ω.

View Article and Find Full Text PDF

Purpose: To assess the safety of acoustic radiation force optical coherence elastography in the crystalline lens in situ.

Methods: Acoustic radiation force (ARF) produced by an immersion single-element ultrasound transducer (nominal frequency = 3.5 MHz) was characterized using a needle hydrophone and used for optical coherence elastography (OCE) of the crystalline lens.

View Article and Find Full Text PDF

Modeling dispersion of circumferential waves in underwater targets with spectral methods.

J Acoust Soc Am

January 2025

National Key Laboratory of Underwater Acoustic Technology, Harbin Engineering University, Harbin 150001, China.

The dispersion of circumferential waves propagating around cylindrical and spherical underwater targets with an arbitrary number of elastic and fluid layers is modeled using the spectral collocation method. The underlying differential equations are discretized by Chebyshev interpolation and the corresponding differentiation matrices, and the calculation of the dispersion curves is transformed into a generalized eigenvalue problem. Furthermore, for targets in infinite fluid, the perfect matched layer is used to emulate the Sommerfeld radiation condition.

View Article and Find Full Text PDF

Background: Treatment of deep carious lesions poses significant challenges in dentistry, as complete lesion removal risks compromising pulp vitality, while selective removal often reduces the longevity of restorations. Herein, we propose a minimally invasive approach using High-Intensity Focused Ultrasound (HIFU) for microscale removal of carious dentine. Concurrently, HIFU's antimicrobial effects against associated cariogenic biofilms and the corresponding thermal and biological impacts on surrounding tissues were investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!