Inorganic medicinal compounds represent a unique and versatile source of potential therapeutics in many diseases and, more recently, in neurodegeneration. Herein we investigated the effects of two η-arene Ru(II) complexes on the self-aggregation processes of several amyloidogenic peptides endowed with different kinetics and primary sequences. The Ru(II) complexes exhibit, around the metal ion, two chlorides, one NHC = -heterocyclic carbene, with a glucosyl and a methyl substituent and separately a hexamethylbenzene, which is named , and one benzene, named . Both complexes were demonstrated to bind monomeric amyloids suppressing aggregation as evidenced in thioflavin T (ThT) binding assays and autofluorescence experiments. Electrospray ionization mass spectrometry (ESI-MS) indicated the formation of direct adducts between amyloid and metal complexes, which determined the marked conformational variation of peptides and a rescue of cellular viability in SH-SY5Y cells. The complex was demonstrated to be a more potent inhibitor of amyloid aggregation compared to likely because of the less hindrance of the arene moiety. The presented data strongly support the in vitro ability of η-arene Ru(II) complexes to suppress amyloid aggregation, providing insights into their potential application as novel therapeutics in neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.4c02456 | DOI Listing |
Sensors (Basel)
December 2024
Chemical Optosensors & Applied Photochemistry Group (GSOLFA), Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, 28040 Madrid, Spain.
Water conductivity sensing relies universally on electrical measurements, which are subject to corrosion of the electrodes and subsequent signal drift in prolonged in situ uses. Furthermore, they cannot provide contactless sensing or remote readout. To this end, a novel device for water conductivity monitoring has been developed by employing a microenvironment-sensitive ruthenium complex, [Ru(2,2'-bipyridine-4,4'-disulfonato)], embedded into a quaternary ammonium functionalized cross-linked polymer support.
View Article and Find Full Text PDFMol Pharm
January 2025
School of Pharmacy, Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong 226001, Jiangsu Province, China.
Photodynamic therapy (PDT) is increasingly regarded as an attractive approach for cancer treatment due to its advantages of low invasiveness, minimal side effects, and high efficiency. Here, two novel Ru(II) complexes , were designed and synthesized by coordinating phenanthroline and biquinoline ligands with Ru(II) center, and their chemo-photodynamic therapy and immunotherapy were explored. Both and exhibited significant phototoxicity against A549 and 4T1 tumor cells type-I/-II PDT.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.
View Article and Find Full Text PDFJ Org Chem
January 2025
Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India.
A streamlined strategy for the one-pot synthesis of isoxazolone analogues has been developed through an acceptorless dehydrogenative annulation (ADA) pathway by employing new Ru(II) hydride complexes as effective catalysts. New Ru(II) complexes () tailored with N̂O chelating carbazolone benzhydrazone ligands were synthesized and their formation was confirmed using analytical and spectral techniques including FT-IR and NMR. The structural configuration of the complexes featuring an octahedral geometry around the Ru(II) ion was precisely determined by single-crystal X-ray diffraction analysis.
View Article and Find Full Text PDFChemistry
December 2024
Indian Institute of Technology Kanpur, Chemistry, Department of Chemistry, Indian Institute of Technology Kanpur, 208016, Kanpur, INDIA.
Herein, the photophysical, photochemical properties and photogenerated excited state dynamics of two new Ru(II) complexes, viz. [Ru(p-ttp)(bpy)(PTA)]2+ [1]2+, [Ru(p-ttp)(phen)(PTA)]2+ [2]2+ having a phosphorus-based ligand PTA [p-ttp = p-tolyl terpyridine; bpy = 2,2'-bipyridyl; phen = 1,10-phenthroline and PTA = 1,3,5-triaza-7-phosphaadamantane] are reported. Upon excitation with 470 nm LED, [1]2+ and [2]2+ neither undergo ligand release nor exhibit room temperature luminescence/1O2 generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!