Abnormal angiogenesis and increased vascular permeability of subchondral bone are key mechanisms related to osteoarthritis (OA). However, the precise mechanisms responsible for heightened vascular permeability in OA remain unclear. The present study used proteomics to identify protein expression in damaged subchondral bone compared with normal subchondral bone. The results suggest that Ras homolog family member A (RhoA) may be associated with the vascular permeability of subchondral bone and ferroptosis in OA. The results of analysis of clinical samples indicated a significant increase in expression of RhoA in the subchondral bone of OA. This were consistent with the proteomics findings. We found through western blotting, RT‑PCR, and immunofluorescence that RhoA significantly increased the permeability of endothelial cells (ECs) by inhibiting inter‑EC adhesion proteins (zona occludens‑1, connexin 43 and Vascular endothelial‑Cadherin) and actin filaments. Furthermore, RhoA induced ferroptosis core proteins (glutathione peroxidase 4, solute carrier family 7 member 11 and acyl‑CoA synthase long‑chain family member 4, ACSL4) by influencing lipid peroxidation and mitochondrial function, leading to ferroptosis of ECs. This suggested an association between RhoA, ferroptosis and vascular permeability. Ferroptosis significantly increased permeability of ECs by inhibiting inter‑EC adhesion proteins. RhoA increased vascular permeability by inducing ferroptosis of ECs. , inhibition of RhoA and ferroptosis significantly mitigated progression of OA by alleviating cartilage degeneration and subchondral bone remodeling in mice with destabilization of the medial meniscus. In conclusion, the present findings indicated that RhoA enhanced vascular permeability in OA by inducing ferroptosis. This may serve as a novel strategy for the early prevention and treatment of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11335351 | PMC |
http://dx.doi.org/10.3892/ijmm.2024.5410 | DOI Listing |
Brain Spine
October 2024
Department of Neurosurgery, University Hospital of Dijon Bourgogne, Dijon, France.
Introduction: The introduction of intraoperative fluorophores represented a significant advancement in neurosurgical practice. Nowadays they found different applications: in oncology to improve the visualization of tumoral tissue and optimize resection rates and in vascular neurosurgery to assess the exclusion of vascular malformations or the permeability of bypasses, with real-time intraoperative evaluations.
Research Question: A comprehensive knowledge of how fluorophores work is crucial to maximize their benefits and to incorporate them into daily neurosurgical practice.
Acta Physiol (Oxf)
February 2025
Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
The blood-brain barrier (BBB) is a highly selective, semipermeable barrier critical for maintaining brain homeostasis. The BBB regulates the transport of essential nutrients, hormones, and signaling molecules between the bloodstream and the central nervous system (CNS), while simultaneously protecting the brain from potentially harmful substances and pathogens. This selective permeability ensures that the brain is nourished and shielded from toxins.
View Article and Find Full Text PDFCurr Mol Med
January 2025
LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Hubei, Huanggang 438000, China.
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) encompass various etiologies and are distinguished by the onset of acute pulmonary inflammation and heightened permeability of the pulmonary vasculature, often leading to substantial morbidity and frequent mortality. There is a scarcity of viable approaches for treating effectively. In recent decades, acupuncture has been proven to be antiinflammatory.
View Article and Find Full Text PDFJ Alzheimers Dis
January 2025
Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore.
Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).
View Article and Find Full Text PDFCardiol Rev
January 2025
From the Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX.
The vascular endothelium and its endothelial glycocalyx contribute to the protection of the endothelial cells from exposure to high levels of sodium and help these structures maintain normal function by regulating vascular permeability due to its buffering effect. The endothelial glycocalyx has negative surface charges that bind sodium and limit sodium entry into cells and the interstitial space. High sodium levels can disrupt this barrier and allow the movement of sodium into cells and extravascular fluid.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!