Introduction: It has been reported that the extension of conjugation in chalcone scaffolds considerably enhanced the potency, selectivity, reversibility, and competitive mode of MAO-B inhibition. In this study, using the experimental results of IC50 values of fifteen halogenated conjugated dienone derivatives (MK1-MK15) against MAO-B, we developed a 3DQSAR model.

Methods: Further, we created a 3D pharmacophore model in active compounds in the series. The built model selected three variables (G2U, RDF115m, RDF155m) among the 653 AlvaDesc molecular descriptors, with a r2 value of 0.87 and a Q2 cv for cross-validation equal to 0.82. The three variables were mostly associated with the direction of symmetry and the likelihood of discovering massive atoms at great distances. The evaluated molecules exhibited a good correlation between experimental and predicted data, indicating that the IC50 value of the structure MK2 was related to the interatomic distances of 15.5 Å between bromine and chloro substituents. Furthermore, the molecules in the series with the highest activity were those with enhanced second component symmetry directional index from the 3D representation, which included the structures MK5 and MK6.

Result: Additionally, a pharmacophore hypothesis was developed and validated using the decoy Schrodinger dataset, with an ROC score of 0.87 and an HHRR 1 fitness score that ranged from 2.783 to 3.00. The MK series exhibited a significant blood-brain barrier (BBB) permeability, according to exploratory analyses and in silico projections, and almost all analogues were expected to have strong BBB permeability.

Conclusion: Further DFT research revealed that electrostatics were important in the interactions with MAO-B.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734099307062240801053329DOI Listing

Publication Analysis

Top Keywords

halogenated conjugated
8
three variables
8
3d-qsar pharmacophore
4
pharmacophore modeling
4
modeling admet
4
admet dft
4
dft studies
4
studies halogenated
4
conjugated dienones
4
dienones potent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!