Diabetes is a metabolic disorder caused by high glucose levels, leading to serious threats such as diabetic neuropathy and cardiovascular diseases. One of the most reliable measures for controlling postprandial hyperglycemia is to reduce the glucose level by inhibiting enzymes in the digestive system, such as Alpha-Glucosidase and Alpha-Amylase. Here, we have investigated the use of inhibitors to inhibit carbohydrate metabolism in order to restrict glucose levels in diabetic patients. Acarbose, Voglibose, and Miglitol are three inhibitors approved by the FDA that efficiently inhibit these two enzymes and thereby minimising hyperglycemia but are al-so significantly helpful in reducing the risk of cardiovascular effects. We also provide insight into the other known inhibitors currently available in the market. The adverse effects associated with other inhibitors emphasise the demand for the latest in silico screening and in vitro validation in the development of potent inhibitors with greater efficacy and safety for the treatment of Type 2 diabetes. The recent findings suggest that Alpha-Glucosidase and Alpha-Amylase play a major role in carbohydrate metabolism and triggering the increase in glucose levels. This review pro-vides the latest scientific literature findings related to these two enzymes as well as the role of primary and secondary inhibitors as potential candidates. Moreover, this review elaborates the framework on the mechanism of action, different plant sources of extraction of these enzymes, as well as kinetic assay of inhibitors and their interaction that can be used in future prospects to de-velop potential leads to combat Type 2 diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113894501313365240722100902DOI Listing

Publication Analysis

Top Keywords

alpha-glucosidase alpha-amylase
12
type diabetes
12
glucose levels
12
inhibitors
8
carbohydrate metabolism
8
enzymes well
8
advances development
4
development alpha-glucosidase
4
alpha-amylase inhibitors
4
inhibitors type
4

Similar Publications

Lichuan black tea (LBT) is a well-known congou black tea in China, but there is relatively little research on its processing technology. Echa No. 10 is the main tea tree variety for producing LBT.

View Article and Find Full Text PDF

Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.

View Article and Find Full Text PDF

Background/objectives: extract, obtained via microwave-enhanced extraction, was evaluated for its antioxidant, antidiabetic, and antimicrobial activities to explore its therapeutic potential.

Methods: The extraction was performed using microwave-enhanced techniques, and LC-MS/MS was employed to profile the metabolites in the extract. Total phenolic and flavonoid contents were quantified using spectrophotometric methods.

View Article and Find Full Text PDF

Changes in functional activities and volatile flavor compounds of fermented mung beans, cowpeas, and quinoa started with Bacillus amyloliquefaciens SY07.

Food Res Int

February 2025

State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457 PR China. Electronic address:

In this work, the functional activities including α-glucosidase, α-amylase, angiotensin converting enzyme (ACE) inhibitory activity, and antioxidant activity of mixed grains (mung beans, cowpeas, and quinoa) fermented with Bacillus amyloliquefaciens SY07 were investigated. The volatile flavor of the mixed grains collected every 12 h during 72 h-fermentation were further detected as well. The inhibition on α-glucosidase and α-amylase reached up to 89.

View Article and Find Full Text PDF

The antioxidant, total phenolic, flavonoid, and anthocyanidin properties of extracts prepared from Cotoneaster frigidus Wall. ex Lindl. "Cornubia" fruit were examined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!