To increase the therapeutic efficacy of nanoparticle (NP)-assisted photothermal therapy (PTT) and allow for a transition toward the clinical setting, it is pivotal to characterize the thermal effect induced in cancer cells and correlate it with the cell biological response, namely cell viability and cell death pathways. This study quantitatively evaluated the effects of gold nanorod (GNR)-assisted near-infrared (NIR) PTT on two different cancer cell lines, the 4T1 triple-negative breast cancer cells and the Pan02 pancreatic cancer cells. The interaction between nanomaterials and biological matrices was investigated in terms of GNR internalization and effect on cell viability at different GNR concentrations. GNR-mediated PTT was executed on both cell lines, at the same treatment settings to allow a straightforward comparison, and real-time monitored through thermographic imaging. A thermal analysis based on various parameters (i.e., maximum absolute temperature, maximum temperature change, temperature variation profile, area under the time-temperature change curve, effective thermal enhancement (ETE), and time constants) was performed to evaluate the treatment thermal outcome. While GNR treatment and NIR laser irradiation alone did not cause cell toxicity in the selected settings, their combination induced a significant reduction of cell viability in both cell lines. At the optimal experimental condition (i.e., 6 μg/mL of GNRs and 4.5 W/cm laser power density), GNR-assisted PTT reduced the cell viability of 4T1 and Pan02 cells by 94% and 87% and it was associated with maximum temperature changes of 25 °C and 29 °C (i.e., ∼1.8-fold increase compared to the laser-only condition), maximum absolute temperatures of 55 °C and 54 °C, and ETE values of 78% and 81%, for 4T1 and Pan02 cells, correspondingly. Also, the increase in the GNR concentration led to a decrease in the time constants, denoting faster heating kinetics upon irradiation. Furthermore, the thermal analysis parameters were correlated with the extent of cell death. Twelve hours after NIR exposure, GNR-assisted PTT was found to mainly trigger secondary apoptosis in both cell lines. The proposed study provides relevant insights into the relationship between temperature history and biological responses in the context of PTT. The findings contribute to the development of a universal methodology for evaluating thermal sensitivity upon NP-assisted PTT on different cell types and lay the groundwork for future translational studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jphotobiol.2024.112993 | DOI Listing |
Viruses
December 2024
Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany.
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging.
View Article and Find Full Text PDFViruses
December 2024
1st Internal Medicine Department, AHEPA University Hospital, School of Medicine, Aristotle University of Thessaloniki, 55436 Thessaloniki, Greece.
People with HIV (PWH) have an elevated risk of cardiovascular disease compared to those without HIV. This study aimed to investigate the relative serum expression of microRNAs (miRNAs) associated with arterial stiffness, a significant marker of cardiovascular disease. A total of 36 male PWH and 36 people without HIV, matched for age, body mass index, pack years, and dyslipidemia, were included in the study.
View Article and Find Full Text PDFThis study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication.
View Article and Find Full Text PDFViruses
December 2024
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia.
Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.
View Article and Find Full Text PDFViruses
December 2024
Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK.
Vesicular stomatitis virus (VSV) represents a significant advancement in therapeutic medicine, offering unique molecular and cellular characteristics that make it exceptionally suitable for medical applications. The bullet-shaped morphology, RNA genome organization, and cytoplasmic replication strategy provide fundamental advantages for both vaccine development and oncolytic applications. VSV's interaction with host cells through the low-density lipoprotein receptor (LDL-R) and its sophisticated transcriptional regulation mechanisms enables precise control over therapeutic applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!