Paeoniflorin suppresses ferroptosis after traumatic brain injury by antagonizing P53 acetylation.

Phytomedicine

Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, Jiangsu, China; Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, Jiangsu, China; Institute of Neurosurgery, Nanjing University, Nanjing, Jiangsu Province, China. Electronic address:

Published: October 2024

Background: Traumatic brain injury (TBI) could induce multiple forms of cell death, ferroptosis, a novel form of cell death distinct from apoptosis and autophagy, plays an important role in disease progression in TBI. Therapies targeting ferroptosis are beneficial for recovery from TBI. Paeoniflorin (Pae) is a water-soluble monoterpene glycoside and the active ingredient of Paeonia lactiflora pall. It has been shown to exert anti-inflammatory and antioxidant effects. However The effects and mechanisms of paeoniflorin on secondary injury after TBI are unknown.

Purpose: To investigate the mechanism by which Pae regulates ferroptosis after TBI.

Methods: The TBI mouse model and cortical primary neurons were utilized to study the protective effect of paeoniflorin on the brain tissue after TBI. The neuronal cell ferroptosis model was established by treating cortical primary neurons with erastin. Liproxstatin-1(Lip-1) was used as a positive control drug. Immunofluorescence staining, Nissl staining, biochemical analyses, pharmacological analyses, and western blot were used to evaluate the effects of paeoniflorin on TBI.

Results: Pae significantly ameliorated neuronal damage after TBI, inhibited mitochondrial damage, increased glutathione peroxidase 4 (GPX4) activity, decreased malondialdehyde (MDA) production, restored neurological function and inhibited cerebral edema. Pae promotes the degradation of P53 in the form of proteasome, promotes its ubiquitination, and reduces the stability of P53 by inhibiting its acetylation, thus alleviating the P53-mediated inhibition of cystine/glutamate antiporter solute carrier family 7 member 11 (SLC7A11) by P53.

Conclusion: Pae inhibits ferroptosis by promoting P53 ubiquitination out of the nucleus, inhibiting P53 acetylation, and modulating the SLC7A11-GPX4 pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phymed.2024.155940DOI Listing

Publication Analysis

Top Keywords

traumatic brain
8
brain injury
8
p53 acetylation
8
injury tbi
8
cell death
8
cortical primary
8
primary neurons
8
tbi
7
ferroptosis
6
paeoniflorin
5

Similar Publications

Primary blast exposure is a predominant cause of mild traumatic brain injury (mTBI) among veterans and active-duty military personnel, and affected individuals may develop long-lasting behavioral disturbances that interfere with quality of life. Our prior research with the "Missouri Blast" model demonstrated behavioral changes relevant to deficits in cognitive and affective domains after exposure to low-intensity blast (LIB). In this study, behavioral evaluations were extended to 3 months post-LIB injury using multifaceted conventional and advanced behavioral paradigms.

View Article and Find Full Text PDF

Optical coherence tomography (OCT) and OCT angiography: Technological development and applications in brain science.

Theranostics

January 2025

School of Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.

Brain diseases are a leading cause of disability and death worldwide. Early detection can lead to earlier intervention and better outcomes for patients. In recent years, optical coherence tomography (OCT) and OCT angiography (OCTA) imaging have been widely used in stroke, traumatic brain injury (TBI), and brain cancer due to their advantages of , unlabeled, and high-resolution 3D microvessel imaging at the capillary resolution level.

View Article and Find Full Text PDF

Background: The safe timing window for surgery during the acute phase of inflammation due to traumatic brain injury (TBI) has not been studied extensively. We aimed to elucidate the relationship between the timing of surgery and changes in perioperative serum levels of inflammatory cytokines and factors associated to optimize TBI management in low-middle-income countries.

Methods: A prospective cohort study was conducted among TBI Patients with depressed skull fractures with a GCS > 8 operated at different timing from injury and followed up peri-operatively.

View Article and Find Full Text PDF

We propose that historical myths fall into two distinctive categories: Traumatic and cooperative. Traumatic myths, highlighting collective suffering, can undermine trust and foster conspiracy theories, whereas cooperative myths, emphasizing collective action, enhance group cohesion and within-group coalition building. Psychological and sociological evidence supports these divergent impacts of historical myths both in nations and social movements.

View Article and Find Full Text PDF

Objective: Extracellular vesicles (EVs) derived from regenerative mesenchymal stem cells might safely treat traumatic brain injury (TBI). We evaluated the safety and efficacy of a human bone marrow derived mesenchymal stem cell EVs (hBM-MSC EV) investigational product (IP) in a patient with severe TBI.

Design: A single case study employing an IP with a strong safety profile in over 200 patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!