A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An attribution graph-based interpretable method for CNNs. | LitMetric

An attribution graph-based interpretable method for CNNs.

Neural Netw

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, Jiangsu, China; State Key Laboratory of High-end Server & Storage Technology, Jinan, 250300, Shandong, China. Electronic address:

Published: November 2024

Convolutional Neural Networks (CNNs) have demonstrated outstanding performance in various domains, such as face recognition, object detection, and image segmentation. However, the lack of transparency and limited interpretability inherent in CNNs pose challenges in fields such as medical diagnosis, autonomous driving, finance, and military applications. Several studies have explored the interpretability of CNNs and proposed various post-hoc interpretable methods. The majority of these methods are feature-based, focusing on the influence of input variables on outputs. Few methods undertake the analysis of parameters in CNNs and their overall structure. To explore the structure of CNNs and intuitively comprehend the role of their internal parameters, we propose an Attribution Graph-based Interpretable method for CNNs (AGIC) which models the overall structure of CNNs as graphs and provides interpretability from global and local perspectives. The runtime parameters of CNNs and feature maps of each image sample are applied to construct attribution graphs (At-GCs), where the convolutional kernels are represented as nodes and the SHAP values between kernel outputs are assigned as edges. These At-GCs are then employed to pretrain a newly designed heterogeneous graph encoder based on Deep Graph Infomax (DGI). To comprehensively delve into the overall structure of CNNs, the pretrained encoder is used for two types of interpretable tasks: (1) a classifier is attached to the pretrained encoder for the classification of At-GCs, revealing the dependency of At-GC's topological characteristics on the image sample categories, and (2) a scoring aggregation (SA) network is constructed to assess the importance of each node in At-GCs, thus reflecting the relative importance of kernels in CNNs. The experimental results indicate that the topological characteristics of At-GC exhibit a dependency on the sample category used in its construction, which reveals that kernels in CNNs show distinct combined activation patterns for processing different image categories, meanwhile, the kernels that receive high scores from SA network are crucial for feature extraction, whereas low-scoring kernels can be pruned without affecting model performance, thereby enhancing the interpretability of CNNs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2024.106597DOI Listing

Publication Analysis

Top Keywords

cnns
13
structure cnns
12
attribution graph-based
8
graph-based interpretable
8
interpretable method
8
method cnns
8
interpretability cnns
8
parameters cnns
8
image sample
8
pretrained encoder
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!