Synthetic lethality between ATR and POLA1 reveals a potential new target for individualized cancer therapy.

Neoplasia

Center for Tumor Biology and Immunology, Department of Gastroenterology, Endocrinology and Metabolism, University Hospital of Marburg, Philipps-University Marburg, Marburg, Germany; Department of Internal Medicine II - Gastroenterology, Oncology and Metabolism, Hospital Memmingen, Memmingen, Germany. Electronic address:

Published: November 2024

The ATR-CHK1 pathway plays a fundamental role in the DNA damage response and is therefore an attractive target in cancer therapy. The antitumorous effect of ATR inhibitors is at least partly caused by synthetic lethality between ATR and various DNA repair genes. In previous studies, we have identified members of the B-family DNA polymerases as potential lethal partner for ATR, i.e. POLD1 and PRIM1. In this study, we validated and characterized the synthetic lethality between ATR and POLA1. First, we applied a model of ATR-deficient DLD-1 human colorectal cancer cells to confirm synthetic lethality by using chemical POLA1 inhibition. Analyzing cell cycle and apoptotic markers via FACS and Western blotting, we were able to show that apoptosis and S phase arrest contributed to the increased sensitivity of ATR-deficient cancer cells towards POLA1 inhibitors. Importantly, siRNA-mediated POLA1 depletion in ATR-deficient cells caused similar effects in regard to impaired cell viability and cumulation of apoptotic markers, thus excluding toxic effects of chemical POLA1 inhibition. Conversely, we demonstrated that siRNA-mediated POLA1 depletion sensitized several cancer cell lines towards chemical inhibition of ATR and its main effector kinase CHK1. In conclusion, the synthetic lethality between ATR/CHK1 and POLA1 might represent a novel and promising approach for individualized cancer therapy: First, alterations of POLA1 could serve as a screening parameter for increased sensitivity towards ATR and CHK1 inhibitors. Second, alterations in the ATR-CHK1 pathway might predict in increased sensitivity towards POLA1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369380PMC
http://dx.doi.org/10.1016/j.neo.2024.101038DOI Listing

Publication Analysis

Top Keywords

synthetic lethality
20
lethality atr
12
cancer therapy
12
increased sensitivity
12
pola1
10
atr pola1
8
individualized cancer
8
atr-chk1 pathway
8
cancer cells
8
chemical pola1
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!