Microbe-driven ammonia nitrogen removal plays a crucial role in the nitrogen cycle and wastewater treatment. However, the rational methods and mechanisms for boosting nitrogen conversion through microbial domestication are still limited. Herein, a combined alkali-photocatalytic stimulation strategy was developed to activate the Halomonas shizuishanensis DWK9 for efficient ammonia nitrogen removal. The strain DWK9 selected from saline-alkaline soil in Northwestern China possessed strong resistance to stress of saline-alkaline environment and free radicals, and was abundant in nitrogen conversion genes, thus is an ideal model for advanced microbial domestication. Bacterial in the combined alkali-photocatalytic stimulation group achieved a high ammonia nitrogen conversion rate of 67.5 %, 10 times outperforming the non-stimulated and single alkali/photocatalytic stimulation control groups. Morphology analysis revealed that the bacteria in the alkali-photocatalytic stimulated group formed a favorable structure for bioelectric transfer. Remarkably, the domesticated bacteria demonstrated improved electrochemical properties, including increased current capacity and lower overpotentials and impedance. Prokaryotic transcription genetic analysis together with qPCR analysis showed upregulation of denitrification-related metabolic pathway genes. A novel FAD dependent and NAD(P)H independent energy mode has been proposed. The universality and effectiveness of the as-developed combined alkali-photocatalytic microbial domestication strategy were further validated through indicator fish survival experiments. This work provides unprecedented degrees of freedom for the exploration of rational microbial engineering for optimized and controllable biogeochemical conversion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.135417 | DOI Listing |
J Hazard Mater
October 2024
East China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Shanghai 200093, PR China. Electronic address:
Microbe-driven ammonia nitrogen removal plays a crucial role in the nitrogen cycle and wastewater treatment. However, the rational methods and mechanisms for boosting nitrogen conversion through microbial domestication are still limited. Herein, a combined alkali-photocatalytic stimulation strategy was developed to activate the Halomonas shizuishanensis DWK9 for efficient ammonia nitrogen removal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!