Developing genetically resistant soybean cultivars is key in controlling the destructive Sclerotinia Stem Rot (SSR) disease. Here, a GWAS study in Canadian soybeans identified potential marker-trait associations and candidate genes, paving the way for more efficient breeding methods for SSR. Sclerotinia stem rot (SSR), caused by the fungal pathogen Sclerotinia sclerotiorum, is one of the most important diseases leading to significant soybean yield losses in Canada and worldwide. Developing soybean cultivars that are genetically resistant to the disease is the most inexpensive and reliable method to control the disease. However, breeding for resistance is hampered by the highly complex nature of genetic resistance to SSR in soybean. This study sought to understand the genetic basis underlying SSR resistance particularly in soybean grown in Canada. Consequently, a panel of 193 genotypes was assembled based on maturity group and genetic diversity as representative of Canadian soybean cultivars. Plants were inoculated and screened for SSR resistance in controlled environments, where variation for SSR phenotypic response was observed. The panel was also genotyped via genotyping-by-sequencing and the resulting genotypic data were imputed using BEAGLE v5 leading to a catalogue of 417 K SNPs. Through genome-wide association analyses (GWAS) using FarmCPU method with threshold of FDR-adjusted p-values < 0.1, we identified significant SNPs on chromosomes 2 and 9 with allele effects of 16.1 and 14.3, respectively. Further analysis identified three potential candidate genes linked to SSR disease resistance within a 100 Kb window surrounding each of the peak SNPs. Our results will be important in developing molecular markers that can speed up the breeding for SSR resistance in Canadian grown soybean.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-024-04708-8DOI Listing

Publication Analysis

Top Keywords

sclerotinia stem
12
stem rot
12
soybean cultivars
12
genetic diversity
8
genome-wide association
8
canadian soybean
8
genetically resistant
8
rot ssr
8
ssr resistance
8
soybean
7

Similar Publications

Stem-end rot caused by Neofusicoccum parvum is among the most detrimental diseases affecting postharvest mangoes. The present investigation utilized (E)-2-octenal to manage N. parvum infections, elucidating its mechanism of action.

View Article and Find Full Text PDF

Several Seiridium species (Sporocadaceae: Xylariales) cause cypress canker in South Africa.

Fungal Biol

February 2025

Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.

Cypress canker is an important fungal disease caused by at least seven different Seiridium species. The disease has been known on Cupressaceae trees in South Africa since the 1980's, but its relevance was recently accentuated with an outbreak on native Widdringtonia nodiflora trees in the Western Cape. The causal agent, S.

View Article and Find Full Text PDF

Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L.

World J Microbiol Biotechnol

January 2025

The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.

The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S.

View Article and Find Full Text PDF

Magnusiomyces capitatus is an environmental fungus found in soil, water, air, plants, and dairy products which may cause opportunistic infections in patients with haematological disorders resulting in high mortality rates. This series of the first reported cases in Ireland discusses investigation of two patients with underlying haematological disorders, hospitalised in the Irish National Adult Stem Cell Transplant Unit (NASCTU), who developed line-related fungaemias with M. capitatus within a three-month period.

View Article and Find Full Text PDF

CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!