The gradual establishment of complex coumarin biosynthetic pathway in Apiaceae.

Nat Commun

Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.

Published: August 2024

Complex coumarins (CCs) represent characteristic metabolites found in Apiaceae plants, possessing significant medical value. Their essential functional role is likely as protectants against pathogens and regulators responding to environmental stimuli. Utilizing genomes and transcriptomes from 34 Apiaceae plants, including our recently sequenced Peucedanum praeruptorum, we conduct comprehensive phylogenetic analyses to reconstruct the detailed evolutionary process of the CC biosynthetic pathway in Apiaceae. Our results show that three key enzymes - p-coumaroyl CoA 2'-hydroxylase (C2'H), C-prenyltransferase (C-PT), and cyclase - originated successively at different evolutionary nodes within Apiaceae through various means of gene duplications: ectopic and tandem duplications. Neofunctionalization endows these enzymes with novel functions necessary for CC biosynthesis, thus completing the pathway. Candidate genes are cloned for heterologous expression and subjected to in vitro enzymatic assays to test our hypothesis regarding the origins of the key enzymes, and the results precisely validate our evolutionary inferences. Among the three enzymes, C-PTs are likely the primary determinant of the structural diversity of CCs (linear/angular), due to divergent activities evolved to target different positions (C-6 or C-8) of umbelliferone. A key amino acid variation (Ala161/Thr161) is identified and proven to play a crucial role in the alteration of enzymatic activity, possibly resulting in distinct binding forms between enzymes and substrates, thereby leading to different products. In conclusion, this study provides a detailed trajectory for the establishment and evolution of the CC biosynthetic pathway in Apiaceae. It explains why only a portion, not all, of Apiaceae plants can produce CCs and reveals the mechanisms of CC structural diversity among different Apiaceae plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316762PMC
http://dx.doi.org/10.1038/s41467-024-51285-xDOI Listing

Publication Analysis

Top Keywords

apiaceae plants
16
biosynthetic pathway
12
pathway apiaceae
12
apiaceae
8
key enzymes
8
structural diversity
8
enzymes
5
gradual establishment
4
establishment complex
4
complex coumarin
4

Similar Publications

Morphology, phylogeography, phylogeny, and taxonomy of (Apiaceae).

Front Plant Sci

January 2025

Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Background: The genus is endemic to China and belongs to the Apiaceae family, which is widely distributed in the Himalaya-Hengduan Mountains (HHM) region. However, its morphology, phylogeny, phylogeography, taxonomy, and evolutionary history were not investigated due to insufficient sampling and lack of population sampling and plastome data. Additionally, we found that was not similar to members but resembled species in morphology, indicating that the taxonomic position of needs to be re-evaluated.

View Article and Find Full Text PDF

Phytochemical investigation and assessment of the anti-inflammatory activity of four taxa growing in Turkey.

Front Pharmacol

January 2025

Centro de Investigación en Ingeniería de Materiales, Facultad de Medicina y Ciencias de la Salud, Universidad Central de Chile, Santiago, Chile.

Introduction: L. has been known as "hogweed" and used for inflammatory diseases, including fever, enteritis, and bronchitis, for many years worldwide. The genus is also prominently recognized for its high content of coumarins, which are considered a significant group of natural compounds known for their noteworthy anti-inflammatory properties.

View Article and Find Full Text PDF

The increasing trend of salinization of agricultural lands represents a great threat to the growth of major crops. Hence, shedding light on the salt-tolerance capabilities of three environment-resilient medicinal species from the Apiaceae, i.e.

View Article and Find Full Text PDF

Exploring the synergistic effects of soil nutrients, rhizosphere fungi, and endophytic fungi on the shaping of root metabolites in Angelica sinensis (Oliv.) Diels.

Fungal Biol

February 2025

School of Agricultural and Biological Engineering, Longdong University, Qingyang, 745000, China; Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, 745000, China.

The root of Angelica sinensis (Oliv.) Diels (Ang) is a bulk Chinese herbal medicine, and the microecological regulation is a sustainable means to enhance its quality. In this study, Angs at five bases (LZ, XZ, QS, PM, MZC) in Minxian County, Gansu Province were taken as the research objects.

View Article and Find Full Text PDF

Untargeted metabolomics and functional analyses reveal that the secondary metabolite quinic acid associates with Angelica sinensis flowering.

BMC Plant Biol

January 2025

Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.

Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!