The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375142PMC
http://dx.doi.org/10.1016/j.virusres.2024.199446DOI Listing

Publication Analysis

Top Keywords

high-risk hpv
12
cell cycle
12
phosphorylation efficiency
8
serine residues
8
binding affinity
8
tumor suppressor
8
high-risk
7
hpv
6
efficiency oncogenic
4
oncogenic properties
4

Similar Publications

Cervical cancer continues to disproportionately burden women in sub-Saharan Africa, and is the commonest gynecological cancer in Ghana. The Cervical Cancer Prevention and Training Centre (CCPTC), Battor, Ghana spearheaded the Ghana arm of the mPharma 10,000 Women Initiative (mTTWI) between September 2021 and October 2022. The aim of this study was to examine the outcomes of nationwide concurrent screening using high-risk human papillomavirus (hr-HPV) DNA testing and visual inspection methods, as well as factors associated with the screening outcomes.

View Article and Find Full Text PDF

Introduction: The United States Preventive Services Task Force (USPSTF) recommendation for cervical cancer screening includes the option to screen with high-risk human papilloma virus (hrHPV) alone, but some studies have reported that hrHPV testing alone missed precancerous and cancerous lesions. In this study, we evaluated the test performance characteristics of hrHPV in detecting cervical dysplasia with cervical cytology and biopsy as comparators.

Materials And Methods: We conducted a retrospective analysis of Papanicolaou smears between January and December 2019 performed at our institution with concurrent hrHPV and cytology testing.

View Article and Find Full Text PDF

: Implementing self-sampling (SS) in cervical cancer screening requires comparable results to clinician-collected samples (CCS). Agreement measures are essential for evaluating HPV test performance. Previous studies on non-paired samples have reported higher viral cycle threshold (Ct) values in SS compared to CCS, affecting sensitivity for detecting cervical intraepithelial neoplasia grade 2 or worse (CIN2+).

View Article and Find Full Text PDF

Human papillomavirus (HPV) is a prevalent sexually transmitted infection, implicated in various cancers, yet its influence in non-cancerous oesophageal tissue remains unclear. This study aims to investigate the gene expression changes associated with high-risk HPV (HR-HPV) in non-cancerous oesophageal tissue to elucidate potential early oncogenic mechanisms. Using RNA sequencing, we compared transcriptomic profiles of HPV-positive and HPV-negative non-cancerous oesophageal tissues.

View Article and Find Full Text PDF

Background: Almost all cases of cervical cancer are associated with persistent high-risk HPV infection. WHO prioritizes primary HPV testing for cervical cancer screening. Cervical cancer screening programs require the ability to process a large number of samples in a simple and standardized manner and obtain reliable results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!