Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The inherent toxicity and persistence of emerging contaminants such as antibiotics and endocrine disruptors pose substantial threats to the environment. Advanced oxidation processes (AOPs) employed for oxidative degradation could yield toxic oxidation by-products (OBPs), including organic acids and aromatic hydrocarbons. Despite their typically low concentrations, OBPs require scrutiny owing to their potential health risks. Although effective assessment methodologies are available, a comprehensive review focusing on the ecological and environmental effects of these pollutants is lacking. This study offers a succinct overview of existing ecotoxicological exposure assessments for emerging organic pollutants. Further, it encapsulates principal dose-response assessment techniques and provides a comparative analysis of several methods. The straightforward assessment factor method evaluates risk based on exposure and species sensitivity and is suitable for preliminary assessments of single pollutants; Species Sensitivity Distribution (SSD) compares species sensitivities to OBPs, emphasizing the importance of species-specific toxicological responses; microcosm and mesocosm methods simulate and predict the effects of OBPs on aquatic life by considering environmental diversity and biological community structures and are ideal for assessing the toxicity of multiple OBPs; the ecological risk analysis model employs mathematical and probabilistic approaches to comprehensively and accurately assess exposures and effects, accounting for the complexities and uncertainties inherent in ecotoxicological evaluations. Different risk characterization techniques are outlined in this study, including the risk quotient (RQ), which is ideal for quantifying and comparing risks; probabilistic ecological risk assessment (PERA), suitable for managing significant uncertainty; and the Environmental Pollution Index (EPI), the preferred method for quantitative assessment of OBP pollution levels. The merits and limitations of each of these quantitative assessment tools are evaluated, providing a comprehensive view of their applications in risk analysis. In addition, pressing contemporary challenges are identified and trajectories and pivotal issues suggested for future research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!