Cyanobacteria proliferate in warm, nutrient-rich environments and release toxic secondary metabolites into natural waters. Using cyanotoxin-contaminated water to irrigate crops could expose humans and biota, but the risk may be low if agricultural soils can sorb and retain cyanotoxins. In this report, we compared the sorption and desorption capacities of multi-class cyanotoxins/anabaenopeptins in soils of variable properties with a batch sorption procedure. The target compounds were anabaenopeptin-A, anabaenopeptin-B, anatoxin-a, cylindrospermopsin, and microcystins -LR, -RR, -LA, -LY, -LW, and -LF. Based on solid-liquid distribution coefficients (K), we classified cylindrospermopsin and microcystin-LA/-LY as "very low sorptivity", anabaenopeptin-A, -B and microcystin-LR, -LF, and -LW as "low sorptivity", and anatoxin-a and microcystin-RR as "medium sorptivity". We remain concerned about irrigating agricultural land with water contaminated with high levels of CYN and MC-LA/-LY because of their relatively low affinity and high desorption proportion in soils. The results also suggest that soil sorption can be an effective immobilization pathway for anatoxin-a and microcystin-RR. The generated data will be useful for prioritizing research on the most bioavailable cyanotoxins/anabaenopeptins that are likely to be released by the soil matrix, for environmental risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175418 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!