Whole-genome resequencing identifies candidate genes associated with heat adaptation in chickens.

Poult Sci

Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China. Electronic address:

Published: October 2024

The wide distribution and diverse varieties of chickens make them important models for studying genetic adaptation. The aim of this study was to identify genes that alter heat adaptation in commercial chicken breeds by comparing genetic differences between tropical and cold-resistant chickens. We analyzed whole-genome resequencing data of 186 chickens across various regions in Asia, including the following breeds: Bian chickens (B), Dagu chickens (DG), Beijing-You chickens (BY), and Gallus gallus jabouillei from China; Gallus gallus murghi from India; Vietnam native chickens (VN); Thailand native chickens (TN) and Gallus gallus spadiceus from Thailand; and Indonesia native chickens (IN), Gallus gallus gallus, and Gallus gallus bankiva from Indonesia. In total, 5,454,765 SNPs were identified for further analyses. Population genetic structure analysis revealed that each local chicken breed had undergone independent evolution. Additionally, when K = 5, B, BY, and DG chickens shared a common ancestor and exhibited high levels of inbreeding, suggesting that northern cold-resistant chickens are likely the result of artificial selection. In contrast, the runs of homozygosity (ROH) and the ROH-based genomic inbreeding coefficient (FROH) results for IN, TN, and VN chickens showed low levels of inbreeding. Low population differentiation index values indicated low differentiation levels, suggesting low genetic diversity in tropical chickens, implying increased vulnerability to environmental changes, decreased adaptability, and disease resistance. Whole-genome selection sweep analysis revealed 69 candidate genes, including LGR4, G6PC, and NBR1, between tropical and cold-resistant chickens. The genes were further subjected to GO and KEGG enrichment analyses, revealing that most of the genes were primarily enriched in biological synthesis processes, metabolic processes, central nervous system development, ion transmembrane transport, and the Wnt signaling pathway. Our study identified heat adaptation genes and their functions in chickens that primarily affect chickens in high-temperature environments through metabolic pathways. These heat-resistance genes provide a theoretical basis for improving the heat-adaptation capacity of commercial chicken breeds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367107PMC
http://dx.doi.org/10.1016/j.psj.2024.104139DOI Listing

Publication Analysis

Top Keywords

gallus gallus
28
chickens
17
heat adaptation
12
cold-resistant chickens
12
chickens gallus
12
native chickens
12
gallus
11
whole-genome resequencing
8
candidate genes
8
commercial chicken
8

Similar Publications

Assessments of genetic diversity, structure, history, and effective population size ( ) are critical for the conservation of imperiled populations. The lesser prairie-chicken () has experienced declines due to habitat loss, degradation, and fragmentation in addition to substantial population fluctuations with unknown effects on genetic diversity. Our objectives were to: (i) compare genetic diversity across three temporally discrete sampling periods (2002, 2007-2010, and 2013-2014) that are characterized by low or high population abundance; (ii) examine genetic diversity at lek and lek cluster spatial scales; (ii) identify potential bottlenecks and characterize genetic structure and relatedness; and (iii) estimate the regional .

View Article and Find Full Text PDF

Wild birds and waterfowl serve as the natural reservoirs of avian influenza viruses (AIVs). When AIVs originating from wild birds cross species barriers to infect mammals or humans, they pose a significant threat to public health. The H12 subtype of AIVs primarily circulates in wild birds, with relatively few isolates reported worldwide, and the evolutionary and biological characteristics of H12 subtype AIVs remain largely unknown.

View Article and Find Full Text PDF

Storage stability evaluation of chicken seasoning by accelerating oil oxidation under different storage conditions.

Food Res Int

February 2025

College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd., Pudong New District, Shanghai 200137, China. Electronic address:

The effects of temperature, humidity, and UV irradiation on the accelerated oil oxidation of chicken seasoning (CS) were investigated, aiming to establish a method for evaluating its storage stability. Key oxidation indicators, such as peroxide value (POV), fatty acid profile, and volatile aldehydes, were measured to assess the degree of oil oxidation. The results indicated that oil oxidation of CS is not significantly accelerated by temperatures of 50-80 °C due to the inhibitory effects of the Maillard reaction.

View Article and Find Full Text PDF

Chicken processing by-products, such as meat left over on bones, skin, frames and connective tissues, are great sources of functional proteins that offer significant potential for value-added applications, contributing to both waste reduction and environmental sustainability. By transforming the recovered proteins from by-products into hydrogels, new materials can be developed for use in various industries, including food. However, understanding the chemical composition of these by-products and optimizing hydrogel production techniques are critical to producing hydrogels with desirable properties.

View Article and Find Full Text PDF

This study was planned and executed to investigate the effects of two levels of compound toxin binder (CTB) on growth performance, serum biochemistry, antioxidant status, intestinal morphology, and the ileal selected microflora population in broiler chickens. A total of 240 one-day-old Ross 308 broiler chickens were divided into four treatments and six replicates (10 chickens per replicate). Experimental groups included; 1, negative control (NC; no aflatoxins (AFs) and no additives); 2, positive control (PC; 490 µg/kg AFs); 3, low levels of compound toxin binder (LCTB), PC + 1 g/kg available CTB (Navacidox); and 4, high levels of compound toxin binder (HCTB), PC + 2 g/kg Navacidox.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!