The digestion rate of steamed soybean (DRSS), protease activity of koji (PAK) and formaldehyde nitrogen content of moromi (FNCM) are key indicators to monitor soy sauce production. Currently, monitoring these indicators relies on workers' experience, which can sometimes lead to low material utilization rates and even fermentation failures. Near-infrared spectra were collected during soybean steaming, as well as koji and moromi fermentation, using miniature fiber spectrometers. These spectra were optimized using four pretreatment methods, and regression models were constructed using PLS, iPLS, and Si-PLS. The evaluation of models in prediction sets was based on the correlation coefficient (Rp) and root mean square error (RMSEP). Results indicated that Rp = 0.9327, RMSEP = 4.37% for DRSS, Rp = 0.9364, RMSEP = 228 U/g for PAK, and Rp = 0.9237, RMSEP =0.148 g/100 mL for FNCM were obtained. The above results coupling with validation experiments demonstrated that the developed in-situ and real-time spectroscopy system could ensure high-quality soy sauce production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.140788DOI Listing

Publication Analysis

Top Keywords

soy sauce
12
sauce production
12
in-situ real-time
8
miniature fiber
8
constructing in-situ
4
real-time monitoring
4
monitoring methods
4
methods soy
4
production miniature
4
fiber nir
4

Similar Publications

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

In this work, the lipidomic analysis on polar components of almond, coconut, and soy beverages was performed by liquid chromatography quadrupole time-of-flight mass spectrometry. A comparison with bovine milk was also performed. A total of 30 subclasses of polar lipids, belonging mainly to glycerophospholipids and sphingolipids, and a total of 572 molecular species were identified.

View Article and Find Full Text PDF

Whole utilization of okara has important economic value, but there are two technical barriers: coarse mouthfeel caused by insoluble dietary fiber (IDF) and undesirable "beany" off-odors. UV-A irradiation and/or microbial fermentation were used to modify okara. The results indicated that single and combined treatments increased the soluble dietary fiber (SDF) content.

View Article and Find Full Text PDF

Nobiletin (NOB), a lipid-soluble polymethoxyflavone with potent antioxidant, antimicrobial, and anti-inflammatory properties, suffers from poor stability and pH sensitivity, limiting its bioavailability. In this study, Pickering high internal phase emulsions (HIPEs) stabilized by soy protein isolate (SPI) and κ-carrageenan (KC) were developed to encapsulate and protect NOB. The emulsions, containing a 75 % medium-chain triglyceride (MCT) volume fraction, were optimized by investigating the effects of pH and KC concentration on the key properties such as the creaming index, particle size, zeta potential, microstructure, and rheology.

View Article and Find Full Text PDF

AozC, a zn(II)Cys transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis.

Microb Cell Fact

January 2025

Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.

Background: In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!