ConspectusIon-selective membranes are key components for sustainable energy devices, including osmotic power generators, electrolyzers, fuel cells, and batteries. These membranes facilitate the flow of desired ions (permeability) while efficiently blocking unwanted ions (selectivity), which forms the basis for energy conversion and storage technologies. To improve the performance of energy devices, the pursuit of high-quality membranes has garnered substantial interest, which has led to the exploration of numerous candidates, such as polymeric membranes (e.g., polyamide and polyelectrolyte), laminar membranes (e.g., transition metal carbide (MXene) and graphene oxide (GO)) and nanoporous 2D membranes (e.g., single-layer MoS and porous graphene). Despite impressive progress, the trade-off effect between ion permeability and selectivity remains a major scientific and technological challenge for these membranes, impeding the efficiency and stability of the resulting energy devices.Two-dimensional polymers (2DPs), which represent monolayer to few-layer covalent organic frameworks (COFs) with periodicity in two directions, have emerged as a new candidate for ion-selective membranes. The crystalline 2DP membranes (2DPMs) are typically fabricated either by bulk crystal exfoliation followed by filtration or by direct interfacial synthesis. Recently, the development of surfactant-monolayer-assisted interfacial synthesis (SMAIS) method by our group has been pivotal, enabling the synthesis of various highly crystalline and large-area 2DPMs with tunable thicknesses (1 to 100 nm) and large crystalline domain sizes (up to 120 μm). Compared to other membranes, 2DPMs exhibit well-defined one-dimensional (1D) channels, customizable surface charge, ultrahigh porosity, and ultrathin thickness, enabling them to overcome the permeability-selectivity trade-off challenge. Leveraging these attributes, 2DPMs have established their critical roles in diverse energy devices, including osmotic power generators and metal ion batteries, opening the door for next-generation technology aimed at sustainability with a low carbon footprint.In this Account, we review our achievements in synthesizing 2DPMs through the SMAIS method and highlight their selective-ion-transport properties and applications in sustainable energy devices. We initially provide an overview of the SMAIS method for producing highly crystalline 2DPMs by utilizing the programmable assembly and enhanced reactivity/selectivity on the water surface. Subsequently, we discuss the critical structural parameters of 2DPMs, including pore sizes, charged sites, crystallinity, and thickness, to elucidate their roles in selective ion transport. Furthermore, we present the burgeoning landscape of energy device applications for 2DPMs, including their use in osmotic power generators and as electrode coating in metal ion batteries. Finally, we conclude persistent challenges and future prospects encountered in synthetic chemistry, material science, and energy device applications within this rapidly evolving field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11339920 | PMC |
http://dx.doi.org/10.1021/acs.accounts.4c00356 | DOI Listing |
J Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Street, Hangzhou 310018 China; Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, China. Electronic address:
To boost supercapacitor (SC) energy density, we introduced redox-active molecules into an aqueous HSO electrolyte. Using retrosynthetic analysis, we identified aminoquinones, specifically triaminochlorobenzoquinone (TACBQ), as promising candidates. Characterization via elemental analysis, Fourier Transform Infrared Spectrometer (FT-IR), nuclear magnetic resonance (NMR), and X-ray photoelectron spectroscopy (XPS) confirmed structure of TACBQ.
View Article and Find Full Text PDFNeural Netw
January 2025
Tsinghua University, Beijing, China. Electronic address:
Artificial neural networks (ANNs) can help camera-based remote photoplethysmography (rPPG) in measuring cardiac activity and physiological signals from facial videos, such as pulse wave, heart rate and respiration rate with better accuracy. However, most existing ANN-based methods require substantial computing resources, which poses challenges for effective deployment on mobile devices. Spiking neural networks (SNNs), on the other hand, hold immense potential for energy-efficient deep learning owing to their binary and event-driven architecture.
View Article and Find Full Text PDFSmall
January 2025
SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751 005, India.
Understanding the resistive switching (RS) behavior of oxide-based memory devices at nanoscale is crucial for advancement of high-integration density in-memory computing platforms. This study explores a comprehensive growth parameter space to address the RS behavior of pulsed-laser-deposited substoichiometric TiO (TiO) thin films in search of tailored nanoscale memristors with low-power consumption and high stability. Conductive-atomic-force-microscopy-based measurements facilitate deciphering the switching behavior at nanoscale, providing a direct avenue to understand the microstructure-property relationships.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
The scarcity of cost-effective and durable iridium-free anode electrocatalysts for the oxygen evolution reaction (OER) poses a significant challenge to the widespread application of the proton exchange membrane water electrolyzer (PEMWE). To address the electrochemical oxidation and dissolution issues of Ru-based electrocatalysts, an electron-donating modification strategy is developed to stabilize WRuO under harsh oxidative conditions. The optimized catalyst with a low Zirconium doping (Zr, 1 wt.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!