Designing robust photocatalysts with broad light absorption, effective charge separation, and sufficient reactive sites is critical for achieving efficient solar energy conversion. However, realizing these aims simultaneously through a single material modulation approach poses a challenge. Here, a 2D ultrathin oxygen vacancy (Ov)-rich BiWMoO solid solution photocatalyst is designed and fabricated to tackle the dilemma through component and structure optimization. Specifically, the construction of a solid solution with ultrathin structure initially facilitates the separation of photoinduced electron-hole pairs, while the introduction of Ov strengthens such separation. In the meantime, the presence of Ov extends light absorption to the NIR region, triggering a photothermal effect that further enhances the charge separation and accelerates the redox reaction. As such, photoinduced charge carriers in the Ov-BiWMoO are separated step by step via the synergistic action of 2D solid solution, O, and solar heating. Furthermore, the introduction of O exposes surface metal sites that serve as reactive Lewis acid sites, promoting the adsorption and activation of toluene. Consequently, the designed Ov-BiWMoO reveals an enhanced photothermal catalytic toluene oxidation rate of 2445 µmol g h under a wide spectrum without extra heat input. The performance is 9.0 and 3.9 times that of BiWO and BiMoO nanosheets, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202404579 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
National University of Singapore, Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Achieving high ionic conductivity and stable performance at low temperatures remains a significant challenge in sodium-metal batteries (SMBs). In this study, we propose a novel electrolyte design strategy that elucidates the solvation structure-function relationship within mixed solvent systems. A mixture of diglyme and 1,3-dioxolane was developed to optimize the solvation structure towards superior low-temperature electrolyte.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States.
Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.
View Article and Find Full Text PDFNat Protoc
January 2025
Department Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
Deep and accurate proteome analysis is crucial for understanding cellular processes and disease mechanisms; however, it is challenging to implement in routine settings. In this protocol, we combine a robust chromatographic platform with a high-performance mass spectrometric setup to enable routine yet in-depth proteome coverage for a broad community. This entails tip-based sample preparation and pre-formed gradients (Evosep One) combined with a trapped ion mobility time-of-flight mass spectrometer (timsTOF, Bruker).
View Article and Find Full Text PDFJ Public Health Policy
January 2025
Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
Intimate partner violence (IPV) is common, and almost half of all IPV takes place in relationships with children in the home. We inventoried laws in the 50 states and the District of Columbia in the United States of America (USA) focused on addressing IPV committed in the presence of children, as these laws could help prevent or remediate this critical health and social issue. Using WestLaw, a web-based legal research service, we identified over 1,200 statutes and 500 regulations.
View Article and Find Full Text PDFNat Mater
January 2025
Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China.
Printing of large-area solar panels necessitates advanced organic solar cells with thick active layers. However, increasing the active layer thickness typically leads to a marked drop in the power conversion efficiency. Here we developed an organic semiconductor regulator, called AT-β2O, to tune the crystallization sequence of the components in active layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!