Lignin, the second most abundant natural polymer, is a by-product of the biorefinery and pulp and paper industries. This study was undertaken to evaluate the properties and estimate the prospects of using lignin as a by-product of the pretreatment of common reed straw () with deep eutectic solvents (DESs) of various compositions: choline chloride/oxalic acid (ChCl/OA), choline chloride/lactic acid (ChCl/LA), and choline chloride/monoethanol amine (ChCl/EA). The lignin samples, hereinafter referred to as Lig-OA, Lig-LA, and Lig-EA, were obtained as by-products after optimizing the conditions of reed straw pretreatment with DESs in order to improve the efficiency of subsequent enzymatic hydrolysis. The lignin was studied using gel penetration chromatography, UV-vis, ATR-FTIR, and H and C NMR spectroscopy; its antioxidant activity was assessed, and the UV-shielding properties of lignin/polyvinyl alcohol composite films were estimated. The DES composition had a significant impact on the structure and properties of the extracted lignin. The lignin's ability to scavenge ABTS and DPPH radicals, as well as the efficiency of UV radiation shielding, decreased as follows: Lig-OA > Lig-LA > Lig-EA. The PVA/Lig-OA and PVA/Lig-LA films with a lignin content of 4% of the weight of PVA block UV radiation in the UVA range by 96% and 87%, respectively, and completely block UV radiation in the UVB range.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312954PMC
http://dx.doi.org/10.3390/ijms25158277DOI Listing

Publication Analysis

Top Keywords

lignin
8
deep eutectic
8
reed straw
8
lig-oa lig-la
8
lig-la lig-ea
8
block radiation
8
green extraction
4
extraction reed
4
reed lignin
4
lignin deep
4

Similar Publications

17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.

View Article and Find Full Text PDF

In this research, 3-(trimethoxysilyl)propyl methacrylate (MPS) silane agent was applied to modify the extracted wheat straw (WS) cellulose as a natural biopolymer. Polyacrylonitrile (PAN) was attached to the MPS-modified WS (MPS-WS) via in-situ polymerization to form PAN-WS biocomposite. AO-WS amidoximated biocomposite adsorbent was synthesized through amidoxime reaction and the effects of different parameters including agitation speed, metal ion concentration, and adsorbent dosage on its efficiency of Pb(II) removal were investigated using the Taguchi experimental design method.

View Article and Find Full Text PDF

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

This study aims to explore the redispersibility of dehydrated nanocellulose with p-toluenesulfonic acid (p-TsOH) fractionated lignin as an eco-friendly and cost-effective capping agent, to cope with the challenge of irreversible agglomeration and thus loss of nanoscale of nanocellulose upon dehydration. The intermixing of nanocellulose and p-TsOH fractionated lignin was achieved using an aqueous ethanol solution as the medium and films of lignin-blending cellulose nanofibers (L + CNF) with excellent redispersing properties were obtained after facile air-drying. With 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!