Mesoporous bioactive glass nanoparticles (MBGNs) doped with therapeutical ions present multifunctional systems that enable a synergistic outcome through the dual delivery of drugs and ions. The aim of this study was to evaluate influence of co-doping with strontium and magnesium ions (SrMg-MBGNs) on the properties of MBGNs. A modified microemulsion-assisted sol-gel synthesis was used to obtain particles, and their physicochemical properties, bioactivity, and drug-loading/release ability were evaluated. Indirect biological assays using 2D and 3D cell culture models on human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and endothelial EA.hy926 cells, respectively, were used to determine biocompatibility of MBGNs, their influence on alkaline phosphatase (ALP) production, calcium deposition, and cytoskeletal organization. Results showed that Sr,Mg-doping increased pore volume and solubility, and changed the mesoporous structure from worm-like to radial-dendritic, which led to a slightly accelerated drug release compared to pristine MBGNs. Biological assays confirmed that particles are biocompatible, and have ability to slightly induce ALP production and calcium deposition of hBM-MSCs, as well as to significantly improve the proliferation of EA.hy926 compared to biochemical stimulation via vascular endothelial growth factor (VEGF) administration or regular media. Fluorescence staining revealed that SrMg-MBGNs had a similar effect on EA.hy926 cytoskeletal organization to the VEGF group. In conclusion, Sr,Mg-MBGNs might be considered promising biomaterial for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312059 | PMC |
http://dx.doi.org/10.3390/ijms25158066 | DOI Listing |
Drug Deliv Transl Res
January 2025
Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, 13200, Kepala Batas, Penang, Malaysia.
The synergistic bioactive effect of polyphenols can enhance the development of functional foods to prevent chronic diseases such as cancer. Curcumin and quercetin have been shown to possess anticancer properties. The combination of curcumin and quercetin has been shown to provide synergistic effects against cancer cell proliferation.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China.
Int J Nanomedicine
January 2025
Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science and Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina, PI, Brazil.
Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.
Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.
J Biomater Appl
January 2025
Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON, Canada.
This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO/CaO content, generating MBG with surface areas of 60-695 m/g.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 159c Nowoursynowska St., 02-776 Warsaw, Poland.
In the modern world, the principles of the bioeconomy are becoming increasingly important. Recycling and reusability play a crucial role in sustainable development. Green chemistry is based on enzymes, but immobilized biocatalysts are still often designed with synthetic polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!